Skip to main content
Log in

Meso-Level Finite Element Modeling Method for Mechanical Response of Braided Composite Tube with Gradient Structure in Axial Direction

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, a novel numerical simulation framework using meso-scale finite element model is developed to predict the mechanical properties and damage mechanisms for one-layer biaxial braided composite tubes with gradient braided structures in axial direction, which involves braided reinforcements with an evolution of braiding angle. To bridge the relationships between the braiding procedure and geometric model, this paper develops an automatic algorithm that generates the geometric model with requiring braiding parameters as input parameters. The braided fabric model is generated by circularly arraying the yarn model, which is established by sweeping varying cross-sections along the centerline with the control of guidelines. The geometric model of matrix pockets is obtained by extracting the fabric model from the whole geometric model of composite tube. After that, a braiding yarn mesh in hexahedron format and co-node matrix mesh in tetrahedron format are generated from the assembled braided fabric and matrix pockets. The framework established in this paper is validated by comparison with the experimental results of the composite tubes with braiding angles from 36.6° to 49.6° subjected to quasi-static axial compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kyosev, Y.: Braiding Technology for Textiles: Principles, Design and Processes. Elsevier, London (2014)

    Google Scholar 

  2. Chiu, C.H., Tsai, K.-H., Huang, W.J.: Effects of braiding parameters on energy absorption capability of Triaxially braided composite tubes. J. Compos. Mater. 32(21), 1964–1983 (1998). https://doi.org/10.1177/002199839803202105

    Article  Google Scholar 

  3. Karbhari, V.M., Haller, J.E.: Rate and architecture effects on progressive crush of braided tubes. Compos. Struct. 43(2), 93–108 (1998). https://doi.org/10.1016/s0263-8223(98)00083-x

    Article  Google Scholar 

  4. Ping, Z., Gui, L., Fan, Z.: Experimental investigation on the energy absorption characteristic of braided composite circular tubes subjected to quasi-static axial compression. Acta Materiae Compositae Sinica. 24, 146–150 (2007)

    Google Scholar 

  5. Karbhari, V.M., Falzon, P.J., Herzberg, I.: Energy absorption characteristics of hybrid braided composite tubes. J. Compos. Mater. 31(12), 1164–1186 (1997). https://doi.org/10.1177/002199839703101201

    Article  Google Scholar 

  6. Zhang, P., Gui, L.-J., Fan, Z.-J., Yu, Q., Li, Z.-K.: Finite element modeling of the quasi-static axial crushing of braided composite tubes. Comput. Mater. Sci. 73, 146–153 (2013). https://doi.org/10.1016/j.commatsci.2013.01.026

    Article  Google Scholar 

  7. Xiao, X., Botkin, M.E., Johnson, N.L.: Axial crush simulation of braided carbon tubes using MAT58 in LS-DYNA. Thin-Walled Struct. 47(6–7), 740–749 (2009). https://doi.org/10.1016/j.tws.2008.12.004

    Article  Google Scholar 

  8. Miravete, A., Bielsa, J.M., Chiminelli, A., Cuartero, J., Serrano, S., Tolosana, N., de Villoria, R.G.: 3D mesomechanical analysis of three-axial braided composite materials. Compos. Sci. Technol. 66(15), 2954–2964 (2006). https://doi.org/10.1016/j.compscitech.2006.02.015

    Article  Google Scholar 

  9. Wu, Z., Ding, H., Ying, Z., Yuan, Y., Hu, X.: Influence of braided fabric on the fracture modes of a composite tube under quasi-static compression. J. Reinf. Plast. Compos. 36(10), 766–779 (2017). https://doi.org/10.1177/0731684417690927

    Article  Google Scholar 

  10. Zhou, H., Zhang, W., Liu, T., Gu, B., Sun, B.: Finite element analyses on transverse impact behaviors of 3-D circular braided composite tubes with different braiding angles. Compos. A: Appl. Sci. Manuf. 79, 52–62 (2015). https://doi.org/10.1016/j.compositesa.2015.09.012

    Article  Google Scholar 

  11. Wu, L., Zhang, F., Sun, B., Gu, B.: Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level. Int. J. Mech. Sci. 84, 41–53 (2014). https://doi.org/10.1016/j.ijmecsci.2014.03.036

    Article  Google Scholar 

  12. Chiu, C.H., Tsai, K.-H., Huang, W.J.: Crush-failure modes of 2D triaxially braided hybrid composite tubes. Compos. Sci. Technol. 59(11), 1713–1723 (1999). https://doi.org/10.1016/s0266-3538(99)00036-6

    Article  Google Scholar 

  13. Priem, C., Othman, R., Rozycki, P., Guillon, D.: Experimental investigation of the crash energy absorption of 2.5D-braided thermoplastic composite tubes. Compos. Struct. 116, 814–826 (2014). https://doi.org/10.1016/j.compstruct.2014.05.037

    Article  Google Scholar 

  14. McGregor, C., Zobeiry, N., Vaziri, R., Poursartip, A., Xiao, X.: Calibration and validation of a continuum damage mechanics model in aid of axial crush simulation of braided composite tubes. Compos. A: Appl. Sci. Manuf. 95, 208–219 (2017). https://doi.org/10.1016/j.compositesa.2017.01.012

    Article  Google Scholar 

  15. Beard, S.J., Chang, F.K.: Energy absorption of braided composite tubes. Int J Crashworthiness. 7(2), 191–206 (2002). https://doi.org/10.1533/cras.2002.0214

    Article  Google Scholar 

  16. Mahdi, E., Hamouda, A.M.S., Sebaey, T.A.: The effect of fiber orientation on the energy absorption capability of axially crushed composite tubes. Materials & Design (1980–2015). 56, 923–928 (2014). https://doi.org/10.1016/j.matdes.2013.12.009

    Article  Google Scholar 

  17. Cater, C., Xiao, X., Goldberg, R.K., Kohlman, L.W.: Experimental and numerical analysis of triaxially braided composites utilizing a modified subcell modeling approach. In: Nasa Tm-2015-218814, pp. 1–47 (2015)

    Google Scholar 

  18. Xu, K., Qian, X.: A new analytical model on predicting the elastic properties of 3D full five-directional braided composites based on a multiunit cell model. Compos. Part B. 83, 242–252 (2015). https://doi.org/10.1016/j.compositesb.2015.08.052

    Article  Google Scholar 

  19. Phoenix, S.L.: Mechanical response of a tubular braided cable with an elastic Core. Text. Res. J. 48(2), 81–91 (2016). https://doi.org/10.1177/004051757804800204

    Article  Google Scholar 

  20. Siromani, D., Henderson, G., Mikita, D., Mirarchi, K., Park, R., Smolko, J., Awerbuch, J., Tan, T.-M.: An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression. Compos. A: Appl. Sci. Manuf. 64, 25–35 (2014). https://doi.org/10.1016/j.compositesa.2014.04.019

    Article  Google Scholar 

  21. Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K., Azhari, C.H.: Effect of trigger configuration on the crashworthiness characteristics of natural silk epoxy composite tubes. Compos. Part B. 55, 5–10 (2013). https://doi.org/10.1016/j.compositesb.2013.05.022

    Article  Google Scholar 

  22. Yan, L., Chouw, N., Jayaraman, K.: Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes. Materials & Design (1980–2015). 56, 528–541 (2014). https://doi.org/10.1016/j.matdes.2013.11.068

    Article  Google Scholar 

  23. Sivagurunathan, R., Way, S.L.T., Sivagurunathan, L., Yaakob, M.Y.: Effects of triggering mechanisms on the crashworthiness characteristics of square woven jute/epoxy composite tubes. J. Reinf. Plast. Compos. 37(12), 824–840 (2018). https://doi.org/10.1177/0731684418763218

    Article  Google Scholar 

  24. Cheng, J.: Material modeling of strain rate dependent polymer and 2D triaxially braided composites. Ph.D. dissertation Akron. University of Akron, Ohio (2006)

    Google Scholar 

  25. Littell, J.D., Binienda, W.K., Goldberg, R.K., Roberts, G.D.: A Modeling Technique and Representation of Failure in the Analysis of Triaxial Braided Carbon Fiber Composites. NASA/TM (2008)

  26. Goldberg, R.K., Blinzler, B.J., Binienda, W.K.: Modification of a macromechanical finite element–based model for impact analysis of Triaxially braided composites. J. Aerosp. Eng. 25(3), 383–394 (2012). https://doi.org/10.1061/(asce)as.1943-5525.0000135

    Article  Google Scholar 

  27. Wang, C., Zhong, Y., Bernad Adaikalaraj, P.F., Ji, X., Roy, A., Silberschmidt, V.V., Chen, Z.: Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J. Mater. Sci. 51(12), 6002–6018 (2016). https://doi.org/10.1007/s10853-016-9901-z

    Article  Google Scholar 

  28. Shunjun, S., Waas, A.M., Shahwan, K.W., Faruque, O., Xinran, X.: Compression response of 2D braided textile composites: single cell and multiple cell micromechanics based strength predictions. J. Compos. Mater. 42(23), 2461–2482 (2008). https://doi.org/10.1177/0021998308096500

    Article  Google Scholar 

  29. Zhao, C., Huang, Y., Chen, Z., Ha, S.K.: Progressive failure prediction of a landing gear structure of braided composites. Compos. Struct. 161, 407–418 (2017). https://doi.org/10.1016/j.compstruct.2016.11.076

    Article  Google Scholar 

  30. Li, X., Binienda, W.K., Goldberg, R.K.: Finite-element model for failure study of two-dimensional Triaxially braided composite. J. Aerosp. Eng. 24(2), 170–180 (2011). https://doi.org/10.1061/(asce)as.1943-5525.0000029

    Article  Google Scholar 

  31. Zhang, C., Li, N., Wang, W., Binienda, W.K., Fang, H.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015). https://doi.org/10.1016/j.compstruct.2015.01.034

    Article  Google Scholar 

  32. Binienda, W.K., Li, X.: Mesomechanical model for numerical study of two-dimensional Triaxially braided composite. J. Eng. Mech. 136(11), 1366–1379 (2010). https://doi.org/10.1061/(asce)em.1943-7889.0000181

    Article  Google Scholar 

  33. Tan, P., Tong, L., Steven, G.P.: Modelling for predicting the mechanical properties of textile composites—a review. Compos. A: Appl. Sci. Manuf. 28(11), 903–922 (1997). https://doi.org/10.1016/s1359-835x(97)00069-9

    Article  Google Scholar 

  34. KO, F.K.: Braiding. In: Engineered Materials Handbook, pp. 519–528. ASM International, Ohio (1987)

    Google Scholar 

  35. Wu, Z., Shu, Z., Kyosev, Y., Yuan, Y., Hu, X.: Numerical prediction methodology for tow orientation on irregular mandrels with constant cross-sections. J. Compos. Mater. 53(8), 1067–1078 (2018). https://doi.org/10.1177/0021998318795033

    Article  Google Scholar 

  36. Abaqus Documentation. Providence (RI, USA): Dassault Systèmes Simulia Corp; 2014

  37. Huang, H., Waas, A.M.: Compressive response of Z-pinned woven glass fiber textile composite laminates: modeling and computations. Compos. Sci. Technol. 69(14), 2338–2344 (2009). https://doi.org/10.1016/j.compscitech.2009.01.008

    Article  Google Scholar 

  38. Pan, Z., Gu, B., Sun, B.: Thermo-mechanical behaviors of 3-D braided composite material subject to high strain rate compressions under different temperatures. Mech. Adv. Mater. Struct. 23(4), 385–401 (2015). https://doi.org/10.1080/15376494.2014.981619

    Article  Google Scholar 

  39. Hooputra, H., Gese, H., Dell, H., Werner, H.: A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness. 9(5), 449–464 (2004). https://doi.org/10.1533/ijcr.2004.0289

    Article  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (Grant No. 51775514 and 51705466) and Zhejiang Provincial Natural Science Foundation of China under Grant No.LR18E050001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Cheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Shi, L., Cheng, X. et al. Meso-Level Finite Element Modeling Method for Mechanical Response of Braided Composite Tube with Gradient Structure in Axial Direction. Appl Compos Mater 26, 1101–1119 (2019). https://doi.org/10.1007/s10443-019-09769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-019-09769-3

Keywords

Navigation