Skip to main content

Advertisement

Log in

Cytotoxicity Analysis of Biosynthesized Selenium Nanoparticles Towards A549 Lung Cancer Cell Line

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The biosynthesis of selenium nanoparticles is performed with the traditionally used medicinal seed of Mucuna pruriens and the synthesis rate of a product is stabilized when the experimental conditions are well operated, to serve this purpose optimization techniques like response surface methodology has been followed. The technique is employed for analysing the average size of the selenium nanoparticles as the response. The variables included are precursor concentration, seed extract concentration and time taken for the synthesis, also the interactive conditions against the size were evaluated, on the basis of quadratic equation constructed with high R2 (coefficient of determination) value of 98%. The responses were collected from DLS and the nanoparticles were further characterized using SEM, TEM, AFM, XRD, and FTIR. The size of the optimized nanoparticles produced was nearly 100–120 nm validated by the software and also from various characterization tools. The optimized SeNPs were subjected to antioxidants through DPPH assay, in which the IC50 value was 60 µg/mL. The cell viability was also evaluated, the calculated IC50 was 40 µg/mL at 48 h, and for 24 h the IC50 was 80 µg/mL. The cost-effective and environmental friendly selenium nanoparticles can be utilized further for future biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Goudarzi, A. Gharehbaii, A facile novel sonochemical-assistance synthesis of NiSe2 quantum dots to improve the efficiency of dye-sensitized solar cells. J. Inorg. Organomet. Polym Mater. 26, 259–263 (2016). https://doi.org/10.1007/s10904-015-0300-8

    Article  CAS  Google Scholar 

  2. A. Husen, K.S. Siddiqi, Plants and microbes assisted selenium nanoparticles: characterization and application. J. Nanobiotechnol. 12, 1–10 (2014). https://doi.org/10.1186/s12951-014-0028-6

    Article  CAS  Google Scholar 

  3. G. Somasundaram, J. Rajan, P. Sangaiya, R. Dilip, Phytochemicals and morphological influence of Aloe barbadensis miller extract capped biosynthesis of CdO nanosticks. J. Inorg. Organomet. Polym Mater. 29, 1862–1873 (2019). https://doi.org/10.1007/s10904-019-01147-7

    Article  CAS  Google Scholar 

  4. P. Singh, H. Singh, Y.J. Kim, R. Mathiyalagan, C. Wang, D.C. Yang, Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme Microb. Technol. 86, 75–83 (2016). https://doi.org/10.1016/j.enzmictec.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  5. K. Kalishwaralal, S. Jeyabharathi, K. Sundar, A. Muthukumaran, A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif. Cells Nanomed. Biotechnol. 1401, 1–7 (2014). https://doi.org/10.3109/21691401.2014.962744

    Article  CAS  Google Scholar 

  6. S. Lampis, E. Zonaro, C. Bertolini, P. Bernardi, C.S. Butler, G. Vallini, Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeiTE01 as a consequence of selenite reduction under aerobic conditions. Microb. Cell Fact. 13, 1–14 (2014). https://doi.org/10.1186/1475-2859-13-35

    Article  CAS  Google Scholar 

  7. H. Harikrishnan, A. Naif Abdullah, K. Ponmurugan, R. Shyam Kumar, Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial. Chalcogenide Lett. 9, 509–515 (2012)

    Google Scholar 

  8. B. Zare, S. Babaie, N. Setayesh, A.R. Shahverdi, A. Shahverdi, Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles extracellular synthesis of selenium nanoparticles using fungi. Nanomed J. 1, 13–19 (2013)

    Google Scholar 

  9. S.H. Dhawane, A.P. Bora, T. Kumar, G. Halder, Parametric optimization of biodiesel synthesis from rubber seed oil using iron-doped carbon catalyst by Taguchi approach. Renew. Energy. 105, 616–624 (2017). https://doi.org/10.1016/j.renene.2016.12.096

    Article  CAS  Google Scholar 

  10. O.A. Journal, V. Karthik, B. Karthick, Optimization and characterization studies on green synthesis of silver nanoparticles using response surface. Methodology 11, 214–221 (2017)

    Google Scholar 

  11. S. Chowdhury, F. Yusof, M.O. Faruck, N. Sulaiman, Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Eng. 148, 992–999 (2016). https://doi.org/10.1016/j.proeng.2016.06.552

    Article  CAS  Google Scholar 

  12. M.S. Alam, A. Garg, F.H. Pottoo, M.K. Saifullah, A.I. Tareq, O. Manzoor, M. Mohsin, M.N. Javed, Gum ghatti mediated, one-pot green synthesis of optimized gold nanoparticles: investigation of process-variables impact using Box-Behnken based statistical design. Int. J. Biol. Macromol. 104, 758–767 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.129

    Article  CAS  PubMed  Google Scholar 

  13. L. Lampariello, A. Cortelazzo, R. Guerranti, C. Sticozzi, G. Valacchi, The magic velvet bean of Mucuna pruriens. J. Tradit. Complement. Med. 2, 331–339 (2012). https://doi.org/10.1016/S2225-4110(16)30119-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Sabesan, S. Arulkumar, Rapid preparation process of antiparkinsonian drug Mucuna pruriens silver nanoparticles by bioreduction and their characterization. Pharmacogn. Res. 2, 233 (2010). https://doi.org/10.4103/0974-8490.69112

    Article  CAS  Google Scholar 

  15. S. Arulkumar, M. Sabesan, Biosynthesis, and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int. J. Res. Pharm. Sci. 1(4), 417–420 (2010)

    CAS  Google Scholar 

  16. R. Ulu, N. Gozel, M. Tuzcu, C. Orhan, İ.P. Yiğit, A. Dogukan, H. Telceken, Ö. Üçer, Z. Kemeç, D. Kaman, V. Juturu, K. Sahin, The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats. Food Chem. Toxicol. 118, 526–531 (2018). https://doi.org/10.1016/j.fct.2018.05.061

    Article  CAS  PubMed  Google Scholar 

  17. D. Mukundan, R. Mohankumar, R. Vasanthakumari, ScienceDirect green synthesis of silver nanoparticles using leaves extract of Bauhinia tomentosa Linn and its invitro anticancer potential. Mater. Today Proc. 2, 4309–4316 (2015). https://doi.org/10.1016/j.matpr.2015.10.014

    Article  Google Scholar 

  18. S. Koutsopoulos, R. Barfod, K.M. Eriksen, R. Fehrmann, Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon. J. Alloys Compd. 725, 1210–1216 (2017). https://doi.org/10.1016/j.jallcom.2017.07.105

    Article  CAS  Google Scholar 

  19. M. Rahbarian, E. Mortazavian, F.A. Dorkoosh, M. Rafiee Tehrani, Preparation, evaluation, and optimization of nanoparticles composed of thiolated triethyl chitosan: a potential approach for buccal delivery of insulin. J. Drug Deliv. Sci. Technol. 44, 254–263 (2018). https://doi.org/10.1016/j.jddst.2017.12.016

    Article  CAS  Google Scholar 

  20. M.M. Ba-Abbad, P.V. Chai, M.S. Takriff, A. Benamor, A.W. Mohammad, Optimization of nickel oxide nanoparticle synthesis through the sol-gel method using Box–Behnken design. Mater. Des. 86, 948–956 (2015). https://doi.org/10.1016/j.matdes.2015.07.176

    Article  CAS  Google Scholar 

  21. N.S. Khoei, S. Lampis, E. Zonaro, K. Yrjälä, P. Bernardi, G. Vallini, Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. N. Biotechnol. 34, 1–11 (2017). https://doi.org/10.1016/j.nbt.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  22. K. Karuppannan, E. Nagaraj, V. Sujatha, Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and its biological applications. N. J. Chem. (2018). https://doi.org/10.1039/c7nj01124e

    Article  Google Scholar 

  23. P.B. Ezhuthupurakkal, L.R. Polaki, A. Suyavaran, A. Subastri, V. Sujatha, C. Thirunavukkarasu, Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Mater. Sci. Eng. C 74, 597–608 (2017). https://doi.org/10.1016/j.msec.2017.02.003

    Article  CAS  Google Scholar 

  24. H. Ghaedi, M. Ayoub, S. Sufian, G. Murshid, S. Farrukh, A.M. Shariff, Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: experimental and modeling. Int. J. Greenh. Gas Control. 66, 147–158 (2017). https://doi.org/10.1016/j.ijggc.2017.09.020

    Article  CAS  Google Scholar 

  25. N. Sathyamoorthy, D. Magharla, P. Chintamaneni, S. Vankayalu, Optimization of paclitaxel loaded poly (ε-caprolactone) nanoparticles using Box Behnken design (Beni-Suef Univ, J. Basic Appl. Sci, 2017). https://doi.org/10.1016/j.bjbas.2017.06.002

    Book  Google Scholar 

  26. S. Gangadoo, D. Stanley, R.J. Hughes, R.J. Moore, J. Chapman, The synthesis and characterization of highly stable and reproducible selenium nanoparticles. Inorg. Nano-Metal Chem. 47, 1568–1576 (2017). https://doi.org/10.1080/24701556.2017.1357611

    Article  CAS  Google Scholar 

  27. S. Rajeshkumar, C. Malarkodi, In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014, 1–10 (2014). https://doi.org/10.1155/2014/581890

    Article  CAS  Google Scholar 

  28. V. Atienza, D.L. Hawksworth, Minutoexcipula tuckerae gen. et sp.nov., a new lichenicolous deuteromycete on Pertusaria texana in the United States. Mycol. Res. 98, 587–592 (1994). https://doi.org/10.1016/s0953-7562(09)80484-x

    Article  Google Scholar 

  29. R. Desai, V. Mankad, S. Gupta, P. Jha, Size distribution of silver nanoparticles: UV-Visible spectroscopic assessment. Nanosci. Nanotechnol. Lett. 4, 30–34 (2012). https://doi.org/10.1166/nnl.2012.1278

    Article  CAS  Google Scholar 

  30. V. Ganesan, Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis Willd. Int J Sci Res 4, 690–695 (2015)

    Google Scholar 

  31. B. Deepa, V. Ganesan, Bioinspiredsynthesis of selenium nanoparticles using flowers of Catharanthus roseus (L.) G. Don and Peltophorum pterocarpum (DC.) Backer ex Heyne: a comparison. Int. J. ChemTech Res. 7, 725–733 (2015)

    Google Scholar 

  32. S.S. Borhade, Antibacterial activity, phytochemical analysis of a methanolic extract of Mucuna pruriens, (n.d.) 269–278

  33. M. Krishnaveni, D. Hariharan, Phytochemical analysis of Mucuna pruriens and Hyoscyamus Niger. Seeds 7, 6–13 (2017)

    CAS  Google Scholar 

  34. J.E. De Andrade, R. Machado, M.A. Macêdo, F.G.C. Cunha, AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering. Polímeros 23, 19–23 (2013). https://doi.org/10.1590/S0104-14282013005000009

    Article  CAS  Google Scholar 

  35. D. Chicea, Using AFM topography measurements in nanoparticle sizing. Rom. Rep. Phys. 66, 778–787 (2014)

    Google Scholar 

  36. S.B. Nimse, D. Pal, Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 5, 27986–28006 (2015). https://doi.org/10.1039/c4ra13315c

    Article  CAS  Google Scholar 

  37. K. Kalishwaralal, S. Jeyabharathi, K. Sundar, S. Selvamani, M. Prasanna, A. Muthukumaran, A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Mater. Sci. Eng. C 92, 151–160 (2018). https://doi.org/10.1016/j.msec.2018.06.036

    Article  CAS  Google Scholar 

  38. J. Zhang, X. Wang, T.T. Xu, Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol. Sci. 101, 22–31 (2008). https://doi.org/10.1093/toxsci/kfm221

    Article  CAS  PubMed  Google Scholar 

  39. J.A.Y. Vyas, S. Rana, Antioxidant activity and biogenic synthesis of selenium nanoparticles using the leaf extract of aloe vera. Int. J. Curr. Pharm. Res. 9, 147–152 (2017)

    Article  CAS  Google Scholar 

  40. S.K. Tammina, B.K. Mandal, S. Ranjan, N. Dasgupta, Cytotoxicity study of Piper nigrum seed-mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B 166, 158–168 (2017). https://doi.org/10.1016/j.jphotobiol.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  41. G. Zhao, X. Wu, P. Chen, L. Zhang, C.S. Yang, J. Zhang, Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic. Biol. Med. 126, 55–66 (2018). https://doi.org/10.1016/j.freeradbiomed.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  42. L.R. Ferguson, N. Karunasinghe, S. Zhu, A.H. Wang, Selenium and its’ role in the maintenance of genomic stability. Mutat. Res. Fundam. Mol. Mech. Mutagen. 733, 100–110 (2012). https://doi.org/10.1016/j.mrfmmm.2011.12.011

    Article  CAS  Google Scholar 

  43. T. Yin, L. Yang, Y. Liu, X. Zhou, J. Sun, J. Liu, Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater. 25, 172–183 (2015). https://doi.org/10.1016/j.actbio.2015.06.035

    Article  CAS  PubMed  Google Scholar 

  44. R. Abdulah, K. Miyazaki, M. Nakazawa, H. Koyama, Chemical forms of selenium for cancer prevention. J. Trace Elem. Med Biol. 19, 141–150 (2005). https://doi.org/10.1016/j.jtemb.2005.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors did not face any disagreement while doing the work and would like to thank the Vellore Institute of Technology for encouragement, seed fund and support bestowed upon us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VenkatKumar Shanmugam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, S., Shanmugam, V. Cytotoxicity Analysis of Biosynthesized Selenium Nanoparticles Towards A549 Lung Cancer Cell Line. J Inorg Organomet Polym 30, 1852–1864 (2020). https://doi.org/10.1007/s10904-019-01409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01409-4

Keywords

Navigation