Skip to main content
Log in

Enhanced Antifungal Activity of Pure and Iron-Doped ZnO Nanoparticles Prepared in the Absence of Reducing Agents

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Pure and iron (Fe)-doped ZnO nanoparticles were synthesized using polyethylene glycol in the absence of reducing agents such as NaOH and ammonia. From XRD patterns, particle sizes pure (33.38 ± 2 nm) and Fe-doped ZnO (27.99 ± 2 nm) were calculated, which were found to be in nanoscale range. XRD patterns of the synthesized samples were refined by the Rietveld method using hexagonal unit cell, and the refinement results for the single-phase samples revealed that the unit cell volume slightly increases by iron doping of ZnO. Antifungal activity of pure and Fe-doped ZnO nanoparticles was observed against three postharvest pathogenic fungi such as Aspergillus niger, Aspergillus flavus and Rhizopus. Iron doping enhances the inhibition zone for all fungal pathogens compared to the pure ZnO nanoparticles. Antifungal activity of the Fe-doped ZnO nanoparticles is comparable with the standard antibiotic mycostatin whose inhibition zone is 18 mm against A. Niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1062562 (2018)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. K.S. Siddiqi, A. ur Rahman, A. Husen, Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 13(1), 141 (2018)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. P.A. Arciniegas-Grijalba, M.C. Patiño-Portela, L.P. Mosquera-Sánchez, J.A. Guerrero-Vargas, J.E. Rodríguez-Páez, ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 7(5), 225–241 (2017)

    Article  CAS  Google Scholar 

  4. E. Ramya, M.V. Rao, L. Jyothi, D.N. Rao, Photoluminescence and nonlinear optical properties of transition metal (Ag, Ni, Mn) doped ZnO nanoparticles. J. Nanosci. Nanotechnol. 18(10), 7072–7077 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light. Spectrochim. Acta, Part A 130, 581–590 (2014)

    Article  CAS  Google Scholar 

  6. K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J. Alloys Compds. 588, 681–689 (2014)

    Article  CAS  Google Scholar 

  7. J. Ji, A.M. Colosimo, W. Anwand, L.A. Boatner, A. Wagner, P.S. Stepanov, T.T. Trinh et al., ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy. Sci. Rep. 6, 31238 (2016)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. E.H. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, E. Coetsee, H.C. Swart, Enhanced green luminescence from ZnO nanorods. J. Vac. Sci. Technol. B, Nanotech. Microelectron. 37(1), 011201 (2019)

    Article  CAS  Google Scholar 

  9. R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing. J. Sci. 2(1), 51–58 (2017)

    Google Scholar 

  10. R.R. Piticescu, R.M. Piticescu, C.J. Monty, Synthesis of Al-doped ZnO nanomaterials with controlled luminescence. J. Eur. Ceram. Soc. 26(14), 2979–2983 (2006)

    Article  CAS  Google Scholar 

  11. G. Krishna Reddy, A. Jagannatha Reddy, R. Hari Krishna, B.M. Nagabhushana, G.R. Gopal, Luminescence and spectroscopic investigations on Gd3 + doped ZnO nanophosphor. J. Asian Ceram. Soc. 5(3), 350–356 (2017)

    Article  Google Scholar 

  12. D.C. Agarwal, U.B. Singh, S. Gupta, R. Singhal, P.K. Kulriya, F. Singh, A. Tripathi, J. Singh, U.S. Joshi, D.K. Avasthi, Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering. Sci. Rep. 9(1), 6675 (2019)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. V.N. Kalpana, V. Devi Rajeswari, A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 3569758 (2018)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. A. Naveed Ul Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, I. Khan, Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J. Nanomater. 2017, 8510342 (2017)

    Article  CAS  Google Scholar 

  15. M. Singh, J. Singh, D. Sharma, B. Kaur, and M. Rawat, Plant leaves mediated synthesis of semiconductor ZnO nanoparticles and its application for seed germination. in AIP Conference Proceedings, vol. 2006, no. 1 (AIP Publishing, 2018), p. 030031

  16. A. Paduraru, C. Ghitulica, R. Trusca, V.A. Surdu, I.A. Neacsu, A.M. Holban, A.C. Birca, F. Iordache, B.S. Vasile, Antimicrobial wound dressings as potential materials for skin tissue regeneration. Materials 12(11), 1859 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  17. D. Sardella, R. Gatt, V.P. Valdramidis, Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res. Int. 101, 274–279 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. R. Cai, Y. Du, D. Yang, G. Jia, B. Zhu, B. Chen, Y. Lv et al., Free-standing 2D nanorafts by assembly of 1D nanorods for biomolecule sensing. Nanoscale (2019). https://doi.org/10.1039/C9NR02636C

    Article  PubMed  Google Scholar 

  19. V.N. Rao, N.L. Reddy, M.M. Kumari, P. Ravi, M. Sathish, K.M. Kuruvilla, V. Preethi et al., Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@ TiO2 core-shell nanostructures. Appl. Catal. B 254, 174–185 (2019)

    Article  CAS  Google Scholar 

  20. P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles. ChemistrySelect 3(31), 9025–9033 (2018)

    Article  CAS  Google Scholar 

  21. N.P. Shetti, S.D. Bukkitgar, R.R. Kakarla, C. Reddy, T.M. Aminabhavi, ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 141, 111417 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. N.L. Reddy, V.N. Rao, M.M. Kumari, R.R. Kakarla, P. Ravi, M. Sathish, M. Karthik, S.M. Venkatakrishnan, Nanostructured semiconducting materials for efficient hydrogen generation. Environ. Chem. Lett. 16(3), 765–796 (2018)

    Article  CAS  Google Scholar 

  23. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment. Electrochim. Acta 317, 416–426 (2019)

    Article  CAS  Google Scholar 

  24. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, S.D. Bukkitgar, Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B 178, 385–394 (2019)

    Article  CAS  Google Scholar 

  25. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 44(26), 13022–13039 (2019)

    Article  CAS  Google Scholar 

  26. C.V. Reddy, I.N. Reddy, B. Akkinepally, K.R. Reddy, J. Shim, Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanostructure photoanode. J. Alloys Compds. 814, 152349 (2020)

    Article  CAS  Google Scholar 

  27. N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, S.S. Kalanur, R.S. Malladi, C.V. Reddy, T.M. Aminabhavi, K.R. Reddy, Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 496, 143656 (2019)

    Article  CAS  Google Scholar 

  28. C.V. Reddy, I.N. Reddy, V.V. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles. Chemosphere 239, 124766 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. S. Gullaa, D. Lomadab, V.V. Srikanthc, M.V. Shankard, K.R. Reddye, S. Sonif, M.C. Reddya, Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Nanotechnology 46, 255 (2019)

    Google Scholar 

  30. A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, J. Dwivedi, S. Sharma, A facile one pot synthesis of novel pyrimidine derivatives of 1, 5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods 163, 105648 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. A. Nagaraja, M.D. Jalageri, Y.M. Puttaiahgowda, K.R. Reddy, A.V. Raghu, A review on various maleic anhydride antimicrobial polymers, J. Microbiol. Methods 105650 (2019)

  32. P. Sharma, S. Pant, V. Dave, K. Tak, V. Sadhu, K.R. Reddy, Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods 160, 107–116 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. K.R. Reddya, P.A. Reddyb, C. Venkata, N.P. Reddyc, B. Babuc, K. Ravindranadhc, M.V. Shankare, M.C. Reddyf, S. Sonig, S. Naveenh, Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications. Nanotechnology 46, 227 (2019)

    Article  CAS  Google Scholar 

  34. R.S. Kumar, S.H. Dananjaya, M. De Zoysa, M. Yang, Enhanced antifungal activity of Ni-doped ZnO nanostructures under dark conditions. RSC Adv. 6(110), 108468–108476 (2016)

    Article  CAS  Google Scholar 

  35. M.M. Chikkanna, S.E. Neelagund, K.K. Rajashekarappa, Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 1(1), 117 (2019)

    Article  CAS  Google Scholar 

  36. J. Hussein, M. El-Banna, T.A. Razik, M.E. El-Naggar, Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. Int. J. Biol. Macromol. 107, 748–754 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. Q.A. Kadhim, R.M. Alwan, R.A. Ali, A.N. Jassim, Synthesis of zinc oxide/polystyrene nanocoposite films and study of antibacterial activity against Escherichia coli and Staphylococcus aures. Nanosci. Nanotechnol. 6(1), 1–5 (2016)

    CAS  Google Scholar 

  38. S. Daikh, F.Z. Zeggai, A. Bellil, A. Benyoucef, Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J. Phys. Chem. Solids 121, 78–84 (2018)

    Article  CAS  Google Scholar 

  39. R.A. Samson, J. Houbraken, R.C. Summerbell, B. Flannigan, J.D. Miller, Common and important species of fungi and actinomycetes in indoor environments, Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control 285–473 (2002)

  40. M. Machida, K. Gomi (eds.), Aspergillus: Molecular Biology and Genomics (Horizon Scientific Press, Wymondham, 2010)

    Google Scholar 

  41. A. Abe, K. Asano, T. Sone, A molecular phylogeny-based taxonomy of the genus Rhizopus. Biosci. Biotechnol. Biochem. 74(7), 1325–1331 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. E.M. Johnson, J.O. Ojwang, A. Szekely, T.L. Wallace, D.W. Warnock, Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob. Agents Chemother. 42(6), 1412–1416 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. V.C. Valerie, M.P. English, Some effects of nystatin on the growth of four Aspergillus species. Microbiology 40(1), 107–118 (1965)

    Google Scholar 

  44. J.A. Koka, A.H. Wani, M.Y. Bhat, Evaluation of antifungal activity of Magnesium oxide (MgO) and Iron oxide (FeO) nanoparticles on rot causing fungi. J Drug Deliv Ther 9(2), 173–178 (2019)

    CAS  Google Scholar 

  45. N. Al-Dhabi, M. Valan Arasu, Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 8(7), 500 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  46. M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A. de Melo, A.A. Hechenleitner, E.A. Pineda, Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Mater. Lett. 159, 84–86 (2015)

    Article  CAS  Google Scholar 

  47. M. Kumari, V.P. Giri, S. Pandey, M. Kumar, R. Katiyar, C.S. Nautiyal, A. Mishra, An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic. Biochem. Physiol. 157, 45–52 (2019)

    Article  CAS  PubMed  Google Scholar 

  48. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica. B 192(1–2), 55–69 (1993)

    Article  Google Scholar 

  49. M.S. Geetha, H. Nagabhushana, H.N. Shivananjaiah, Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J. Sci. 1(3), 301–310 (2016)

    Google Scholar 

  50. P.M. Anjana, M.R. Bindhu, M. Umadevi, R.B. Rakhi, Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles. J. Mater. Sci. 29(7), 6040–6050 (2018)

    CAS  Google Scholar 

  51. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 10(3), 125–135 (2016)

    Article  CAS  Google Scholar 

  52. G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C 115(15), 7145–7152 (2011)

    Article  CAS  Google Scholar 

  53. Z. Rezay Marand, M. Helmi Rashid Farimani, Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed. J. 1(4), 238–247 (2014)

    Google Scholar 

  54. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7(2), 184–192 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakthipandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferin Fathima, A., Jothi Mani, R., Sakthipandi, K. et al. Enhanced Antifungal Activity of Pure and Iron-Doped ZnO Nanoparticles Prepared in the Absence of Reducing Agents. J Inorg Organomet Polym 30, 2397–2405 (2020). https://doi.org/10.1007/s10904-019-01400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01400-z

Keywords

Navigation