Skip to main content
Log in

HMDS–GPTMS Modified Titania Silica Nanocomposite: A New Material for Oil–Water Separation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A simple and feasible method is proposed for the fabrication of a super-hydrophobic coating on cotton fabric via sol–gel process. The wettability of the coating was investigated by water contact angle measurement (WCA). WCA of coated fabric reached up to 161.5 ± 1.02°. The tensile strength and Young’s modulus and mechanical properties of coated fabric is quite promising than uncoated fabric. Moreover, the coated fabric can effectively separate oil–water mixtures through an ordinary filtering process with a separation efficiency of 99%. After 15 cycles of separation the contact angle changes to 155.6 ± 0.98° only and material maintained its super-hydrophobic property. The durability of the coating was evaluated by exposing the specimen at harsh environments like acidic, alkaline, saline, and ultraviolet irradiation was conducted. The tear test was evaluated using the adhesive tape test, abrasion resistance test apart from washing stability and these results suggested that the coating was sufficiently stable. The coated fabric free of fluorine and chlorine can be effectively utilized in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Hong, W.K. Bae, H. Lee, S. Oh, K. Char, F. Caruso, J. Cho, Tunable superhydrophobic and optical properties of colloidal films coated with block-copolymer-micelles/micelle-multilayers. Adv. Mater. 19, 4364–4369 (2007)

    Article  CAS  Google Scholar 

  2. S. Yang, S. Chen, Y. Tian, C. Feng, L. Chen, Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol–gel process. Chem. Mater. 20, 1233–1235 (2008)

    Article  CAS  Google Scholar 

  3. X.X. Zhang, S. Cai, D. You, L.H. Yan, H.B. Lv, X.D. Yuan, B. Jiang, Template-free sol-gel preparation of superhydrophobic ORMOSIL films for double-wavelength broadband antireflective coatings. Adv. Func. Mater. 23, 4361–4365 (2013)

    Article  CAS  Google Scholar 

  4. Q. Wang, T.-A. Asoh, H. Uyama, Facile fabrication of flexible bacterial cellulose/silica composite aerogel for oil/water separation. Bull. Chem. Soc. Jpn. 91, 1138–1140 (2018)

    Article  CAS  Google Scholar 

  5. D. Angelova, I. Uzunov, S. Uzunova, A. Gigova, L. Minchev, Kinetics of oil and oil products adsorption by carbonized rice husks. Chem. Eng. J. 172, 306–311 (2011)

    Article  CAS  Google Scholar 

  6. P.S. Brown, B. Bhushan, Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philosophic. Trans. R Soc. A 374, 20160135 (2016)

    Article  Google Scholar 

  7. Y. Cao, X. Zhang, L. Tao, K. Li, Z. Xue, L. Feng, Y. Wei, Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater. Interfaces 5, 4438–4442 (2013)

    Article  CAS  Google Scholar 

  8. Z. Chu, Y. Feng, S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54, 2328–2338 (2015)

    Article  CAS  Google Scholar 

  9. F. Liu, M. Ma, D. Zang, Z. Gao, C. Wang, Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohyd. Polym. 103, 480–487 (2014)

    Article  CAS  Google Scholar 

  10. J. Zhu, B. Liu, L. Li, Z. Zeng, W. Zhao, G. Wang, X. Guan, Simple and green fabrication of a superhydrophobic surface by one-step immersion for continuous oil/water separation. J. Phys. Chem. A 120, 5617–5623 (2016)

    Article  CAS  Google Scholar 

  11. Y. Yu, H. Chen, Y. Liu, V.S. Craig, Z. Lai, Selective separation of oil and water with mesh membranes by capillarity. Adv. Coll. Interface Sci. 235, 46–55 (2016)

    Article  CAS  Google Scholar 

  12. J. Wang, Y. Chen, Oil–water separation capability of superhydrophobic fabrics fabricated via combining polydopamine adhesion with lotus-leaf-like structure. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.42614

    Article  Google Scholar 

  13. G. Wang, Z. Zeng, H. Wang, L. Zhang, X. Sun, Y. He, L. Li, X. Wu, T. Ren, Q. Xue, Low drag porous ship with superhydrophobic and superoleophilic surface for oil spills cleanup. ACS Appl. Mater. Interfaces 7, 26184–26194 (2015)

    Article  CAS  Google Scholar 

  14. B. Dubansky, A. Whitehead, J.T. Miller, C.D. Rice, F. Galvez, Multitissue molecular, genomic, and developmental effects of the deepwater horizon oil spill on resident Gulf killifish (Fundulus grandis). Environ. Sci. Technol. 47, 5074–5082 (2013)

    Article  CAS  Google Scholar 

  15. Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, Special wettable materials for oil/water separation. J. Mater. Chem. A 2, 2445–2460 (2014)

    Article  CAS  Google Scholar 

  16. M. Li, F. Chen, C. Liu, J. Qian, Z. Wu, Z. Chen, Electrospun fibrous PTFE supported ZnO for oil-water separation. J. Inorg. Organomet. Polym. Mater. DO 29, 1738–1745 (2019)

    Article  CAS  Google Scholar 

  17. J. Ge, D. Zong, Q. Jin, J. Yu, B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv. Func. Mater. 28, 1705051 (2018)

    Article  Google Scholar 

  18. Z. Wang, Y. Xu, Y. Liu, L. Shao, A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup. J. Mater. Chem. A 3, 12171–12178 (2015)

    Article  CAS  Google Scholar 

  19. Z. Xu, K. Miyazaki, T. Hori, Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Appl. Surf. Sci. 370, 243–251 (2016)

    Article  CAS  Google Scholar 

  20. H. Zhou, H. Wang, H. Niu, A. Gestos, T. Lin, Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Func. Mater. 23, 1664–1670 (2013)

    Article  CAS  Google Scholar 

  21. M.E. Yazdanshenas, M. Shateri-Khalilabad, One-step synthesis of superhydrophobic coating on cotton fabric by ultrasound irradiation. Ind. Eng. Chem. Res. 52, 12846–12854 (2013)

    Article  CAS  Google Scholar 

  22. I. Das, G. De, Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use. Sci. Rep. 5, 18503 (2015)

    Article  Google Scholar 

  23. M.A. Shirgholami, M.S. Khalil-Abad, R. Khajavi, M.E. Yazdanshenas, Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution–immersion process. J. Colloid Interface Sci. 359, 530–535 (2011)

    Article  CAS  Google Scholar 

  24. K. Sasaki, M. Tenjimbayashi, K. Manabe, S. Shiratori, Asymmetric superhydrophobic/superhydrophilic cotton fabrics designed by spraying polymer and nanoparticles. ACS Appl. Mater. Interfaces 8, 651–659 (2015)

    Article  Google Scholar 

  25. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I. Yahia, Influence of TiO 2 incorporation on the microstructure, optical, and dielectric properties of TiO2/epoxy composites. J. Inorg. Organomet. Polym Mater. 28, 1114–1126 (2018)

    Article  CAS  Google Scholar 

  26. S. Köytepe, T. Seçkin, N. Kıvrılcım, Hİ. Adıgüzel, Synthesis and dielectric properties of polyimide-titania hybrid composites. J. Inorg. Organomet. Polym Mater. 18, 222–228 (2008)

    Article  Google Scholar 

  27. P. Espiard, A. Guyot, J. Mark, Surface functionalized colloidal silica particles from an inverse microemulsion sol gel process. J. Inorg. Organomet. Polym. 5, 391–407 (1995)

    Article  CAS  Google Scholar 

  28. S. Murugesan, G.S. Sur, J.E. Mark, G. Beaucage, In-situ catalyst generation and controlled hydrolysis in the sol–gel precipitation of zirconia and titania particles in poly (dimethylsiloxane). J. Inorg. Organomet. Polym. 14, 239–252 (2004)

    Article  CAS  Google Scholar 

  29. P. Jaseela, J. Garvasis, A. Joseph, Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2)–poly vinyl alcohol (PVA) nanocomposite. J. Mol. Liq. 286, 110908 (2019)

    Article  CAS  Google Scholar 

  30. K. Zhang, Q. Han, C. Liu, Y. Pei, L. Tang, L. Zhao, L. Wu, Superhydrophobic and superparamagnetic composite coatings: a comparative study on dual-sized functional magnetite nanoparticles/silicone rubber. J. Inorg. Organomet. Polym. Mater. 27, 1816–1825 (2017)

    Article  CAS  Google Scholar 

  31. U. Zulfiqar, S.Z. Hussain, M. Awais, M.M.J. Khan, I. Hussain, S.W. Husain, T. Subhani, In-situ synthesis of bi-modal hydrophobic silica nanoparticles for oil-water separation. Colloids Surf. A 508, 301–308 (2016)

    Article  CAS  Google Scholar 

  32. X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, B. Yang, Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir 25, 7375–7382 (2009)

    Article  CAS  Google Scholar 

  33. S. Srinivasan, V.K. Praveen, R. Philip, A. Ajayaghosh, Bioinspired superhydrophobic coatings of carbon nanotubes and linear π systems based on the “bottom-up” self-assembly approach. Angew. Chem. Int. Ed. 47, 5750–5754 (2008)

    Article  CAS  Google Scholar 

  34. P. Jaseela, A. Joseph, Development of flower like hierarchical thiourea loaded titania-poly vinyl alcohol nano composite coatings for the corrosion protection of mild steel in hydrochloric acid. J. Inorg. Organomet. Polym Mater. 28, 1468–1482 (2018)

    Article  CAS  Google Scholar 

  35. J. Liang, Y. Zhou, G. Jiang, R. Wang, X. Wang, R. Hu, X. Xi, Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation. J. Text. Inst. 104, 305–311 (2013)

    Article  CAS  Google Scholar 

  36. J. Huang, S. Li, M. Ge, L. Wang, T. Xing, G. Chen, X. Liu, S.S. Al-Deyab, K. Zhang, T. Chen, Robust superhydrophobic TiO2@ fabrics for UV shielding, self-cleaning and oil–water separation. J. Mater. Chem. A 3, 2825–2832 (2015)

    Article  CAS  Google Scholar 

  37. C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Robust fluorine-free superhydrophobic PDMS–ormosil@ fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A 4, 12179–12187 (2016)

    Article  CAS  Google Scholar 

  38. D. Caschera, B. Cortese, A. Mezzi, M. Brucale, G.M. Ingo, G. Gigli, G. Padeletti, Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications. Langmuir 29, 2775–2783 (2013)

    Article  CAS  Google Scholar 

  39. X. Yang, L. Yan, F. Ran, A. Pal, J. Long, L. Shao, Interface-confined surface engineering constructing water-unidirectional Janus membrane. J. Membr. Sci. 576, 9–16 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jaseela.P.K.is grateful to Maulana Azad National Fellowship (MANF) for providing financial support. The authors wish to thank Associate Professor Sujith A Department of Chemistry, NIT, Calicut and CSIF, Department of Chemistry for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Joseph.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaseela, P.K., Shamsheera, K.O. & Joseph, A. HMDS–GPTMS Modified Titania Silica Nanocomposite: A New Material for Oil–Water Separation. J Inorg Organomet Polym 30, 2134–2141 (2020). https://doi.org/10.1007/s10904-019-01405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01405-8

Keywords

Navigation