Skip to main content
Log in

Enhancement of Impurity, Machinability and Mechanical Properties in Te-Treated 0Cr18Ni9 Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To enhance the machinability and mechanical properties of 0Cr18Ni9 steel, free-machining element Te was introduced in this work. By adding various quantities of Te to steel, several machining and tensile tests were carried out. Results show that with Te addition of 530 ppm, the number of inclusion sizes below 1 μm disappeared. With raising Te from 360 to 530 ppm, more MnTe–MnS inclusions of 10–40 μm were in spherical shape; above 50 μm2, the ratio of inclusion area at 530 ppm was greatest among all, and the large-sized inclusions occupied a larger share. Te addition contributed to the surfaces of machining steels more smooth. The ultimate tensile strength of steel increased from 399 to 435 MPa. Te resulted in growth of sulfides and improved the machinability of steel.

Graphic Abstract

(a) The original sulfide in steel and its distribution is located along the grain bounday with sizes of 2–3 μm. (b) The Te-treated sulfide in steel and its distribution is still located along the grain bounday with most sizes exceeding 10 μm; and MnTe encapsulated the outer surfaces of MnS. (c) The Te-treated hot-rolling sulfide in steel, which is slightly elongated. The morphology of sulfide is changed from spherical shape to spindle shape. Both spherical and spindle shapes of MnS are beneficial to improving the cutting and mechanical properties of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, K. Takano, J. Mater. Process. Technol. 143–144(SI), 66–71(2003)

  2. Z. Li, D. Wu, J. Mater. Sci. Technol. 26, 839–844 (2010)

    Article  CAS  Google Scholar 

  3. J.B. Xie, D. Zhang, Q.K. Yang, J.M. An, Z.Z. Huang, J.X. Fu, Ironmak. Steelmak. 46, 564–573 (2019)

    Article  CAS  Google Scholar 

  4. R.H. Aborn, in Proceedings of First Conference on the Influence of Metallurgy on Machinability of Steel Iron and Steel, 26–28 Sep. 1977, Tokyo, Japan, 381–395.

  5. R. Aborn, The Role of Metallurgy, Particularly Bismuth, Selenium and Tellurium in the Machinability of Steels (American Smelting and Refining Co., New York, 1968)

    Google Scholar 

  6. D. Bhattacharya, D.T. Quinto, Metall. Trans. A 11, 919–934 (1980)

    Article  Google Scholar 

  7. H. Yaguchi, Mater. Sci. Technol. 4, 926–931 (1988)

    Article  CAS  Google Scholar 

  8. M. Somekawa, M. Kaiso, Y. Matsushima, H. Yaguchi, Kobe. Technol. Rev. 24, 9–13 (2001)

    CAS  Google Scholar 

  9. G. Bernsmann, M. Bleymeh, R. Ehl, A. Hassler, Stahl Eisen 12, 87–91 (2001)

    Google Scholar 

  10. N.E. Luiz, R. Machado, J. Eng. Manuf. 222, 347–360 (2008)

    Article  CAS  Google Scholar 

  11. A. Mahmutoviü, M. Rimac, J. Trends Dev. Machin. Assoc. Technol. 19, 53–56 (2015)

    Google Scholar 

  12. J. Bellot, M. Gantois, Trans. ISIJ 18, 536–543 (1978)

    Article  CAS  Google Scholar 

  13. H. Yaguchi, N. Onodera, Trans. ISIJ 28, 1051–1059 (1988)

    Article  CAS  Google Scholar 

  14. H.T. Liu, W.Q. Chen, Ironmak. Steelmak. 41, 355–359 (2014)

    Article  CAS  Google Scholar 

  15. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, Metall. Mater. Trans. B 48, 2447–2458 (2017)

    Article  CAS  Google Scholar 

  16. A. Mahmutovi, M. Rimac, J. Trends Dev. Machin. Assoc. Technol. 19, 53–56 (2015)

    Google Scholar 

  17. P. Shen, Q.K. Yang, D. Zhang, S.F. Yang, J.X. Fu, Metals 8, 639–650 (2018)

    Article  Google Scholar 

  18. T.Y. Tien, L.H. Van Vlack, R.J. Martin, University of Michigan: New York, USA, September 1967.

  19. D. Zhang, P. Shen, J.B. Xie, J.M. An, Z.Z. Huang, J.X. Fu, J. Iron Steel Res. Int. 26, 275–284 (2018)

    Article  Google Scholar 

  20. Y. Xu, J.S. Liu, Y.X. Jiao, Met. Mater. Int. 25, 823–837 (2019)

    Article  CAS  Google Scholar 

  21. H.F. Fischmeister, E. Navara, K, Met. Sci. J. 6, 211–215 (1972)

    Article  CAS  Google Scholar 

  22. T. Pasang, A. Kirchner, U. Jehring, M. Aziziderouei, Y. Tao, C.R. Jiang, J.C. Wang, I.S. Aisyah, Met. Mater. Int. 25, 1278–1286 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financed by the National Natural Science Foundation of China (Granted Nos. 51871195, 51671124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Jb., Fan, T., Sun, H. et al. Enhancement of Impurity, Machinability and Mechanical Properties in Te-Treated 0Cr18Ni9 Steel. Met. Mater. Int. 27, 1416–1427 (2021). https://doi.org/10.1007/s12540-019-00545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00545-3

Keywords

Navigation