Skip to main content
Log in

In-Situ Synthesis of Aluminum Matrix Composite from Al–NiO System by Mechanical Alloying

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, Al-based composites reinforced by Alumina and Al–Ni intermetallic compounds have been successfully fabricated by mechanical alloying technique. The intermetallic phase, i.e., NiAl, NiAl3, Ni2Al3, as well as Alumina, were formed in the aluminum matrix by in situ solid-state reactions between pure Al and NiO powders. The effects of NiO content (7–10–13 vol%) on the characteristics of the fabricated composites were examined, the hardness, wear properties, phase constituent, and composite microstructure with different NiO content in particular. The results showed that the addition of NiO to Al increases the formation of Al–Ni system intermetallic compounds and enhance the surface hardness. Further, it is ascertained that Al–10 vol% NiO nanocomposite has better wear properties in comparison with samples with 7 and 13 vol% NiO due to the better matrix integrity and reinforcement distribution in the Al matrix.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Zygmunt-Kiper, L. Blaz, M. Sugamata, Effect of temperature on the structure and mechanical properties of mechanically alloyed Al–NiO composite. Arch. Metall. Mater. 59, 12–126 (2014)

    Google Scholar 

  2. B. Reddy, K. Rajasekhar, M. Venu, J. Dilip, S. Das, K. Das, Mechanical activation-assisted solid-state combustion synthesis of in situ aluminum matrix hybrid (Al3Ni/Al2O3) nanocomposites. J. Alloys Compd. 465, 97–105 (2008)

    Article  CAS  Google Scholar 

  3. H. Pour, M. Lieblich, S. Shabestari, M. Salehi, Influence of pre-oxidation of NiAl intermetallic particles onthermal stability of Al/NiAlp composites at 500 °C. Scripta Mater. 53, 977–982 (2005)

    Article  CAS  Google Scholar 

  4. M. Krasnowski, S. Gierlotka, T. Kulik, Nanocrystalline matrix Al3Ni2eAleAl3Ni composites produced by reactive hot-pressing of milled powders. Intermetallics 54, 193–198 (2014)

    Article  CAS  Google Scholar 

  5. B. Pirouzi, E. Borhani, Effects of reinforcement distribution on the mechanical properties of Al–Fe3O4 nanocomposites fabricated via accumulative roll bonding. Mech. Adv. Compos. Struct. 5, 131–139 (2018)

    Google Scholar 

  6. Yang Xue, Rujuan Shen, Song Ni, Min Song, Daihong Xiao, Fabrication, microstructure and mechanical properties of Al–Fe intermetallic particle reinforced Al-based composites. J. Alloys Compd. 618, 537–544 (2015)

    Article  CAS  Google Scholar 

  7. H.A. Senthilkumar, Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying. J. Alloys Compd. 505, 772–782 (2010)

    Article  Google Scholar 

  8. A. Salimi, E. Borhani, E. Emadoddin, Evaluation of Mechanical Properties and Structure of Al-1100 Composite Reinforced with ZrO2 Nanoparticles via Accumulative Roll-Bonding (The Indian Institute of Metals - IIM, Kolkata, 2016)

    Google Scholar 

  9. S. Baazamat, M. Tajally, E. Borhani, Fabrication and characteristic of Al-based hybrid nanocomposite reinforced with WO3 and SiC by accumulative roll bonding process. J. Alloys Compd. 653, 39–46 (2015)

    Article  CAS  Google Scholar 

  10. M. Naseri, M. Reihanian, E. Borhani, EBSD characterization of nano/ultrafine structured Al/Brass composite produced by severe plastic deformation. J. Ultrafine Grained Nanostruct. Mater. 51, 123–138 (2018)

    CAS  Google Scholar 

  11. Z. Sadeghian, S. Zohari, B. Lotfi, C. Broeckmann, Fabrication and characterization of reactive Ni–Ti–C powder by mechanical alloying. J. Alloys Compd. 589, 157–163 (2014)

    Article  CAS  Google Scholar 

  12. Heguo Zhu, Guanhong Guo, Tao Cui, Jiewen Huang, Jianliang Li, In situ aluminum matrix composites fabricated from Al–Ni2O3 system through microwave synthesis. Mater. Chem. Phys. 153, 333–337 (2015)

    Article  CAS  Google Scholar 

  13. Jinwen Qian, Jinglong Li, Jiangtao Xiong, Fusheng Zhang, Xin Lin, In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater. Sci. Eng. A 550, 279–285 (2012)

    Article  CAS  Google Scholar 

  14. R. Yamanoglu, Production and characterization of Al–xNi in situ composites using hot pressing. J. Min. Metall. 50, 45–52 (2014)

    Article  CAS  Google Scholar 

  15. A. Wagih, Mechanical properties of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying. Adv. Powder Technol. 26, 253–258 (2015)

    Article  CAS  Google Scholar 

  16. D. Bovand, M. Yousefpour, S. Rasouli, S. Bagherifard, N. Bovand, A. Tamayol, Characterization of Ti-HA composite fabricated by mechanical alloying. Mater. Des. 65, 447–453 (2015)

    Article  CAS  Google Scholar 

  17. S. Alalhessabi, S. Manafi, E. Borhani, The structural and mechanical properties of Al–2.5%wt. B4C metal matrix nano-composite fabricated by the mechanical alloying. Mech. Adv. Compos. Struct. 2, 39–44 (2015)

    Google Scholar 

  18. H. Ghods, S. Manafi, E. Borhani, Effect of particle size on the structural and mechanical properties of Al–AlN nanocomposites fabricated by mechanical alloying. Mech. Adv. Compos. Struct. 2, 73–78 (2015)

    Google Scholar 

  19. S. Garroni, S. Enzo, F. Delogu, Mesostructural refinement in the early stages of mechanical alloying. Scripta Mater. 83, 49–52 (2014)

    Article  CAS  Google Scholar 

  20. M. Adamiak, Mechanical alloying for fabrication of aluminium matrix composite powders with Ti-Al intermetallics reinforcement. J. Achiev. Mater. Manuf. Eng. 31(2), 191–196 (2008)

    Google Scholar 

  21. L. Xue-wen, Structure and morphology of Ti–Al composite powders treated by mechanical alloying. Trans. Nonferrous Met. Soc. China 21, s338–s341 (2011)

    Article  Google Scholar 

  22. D. Gu, In-situ TiC particle reinforced Ti–Al matrix composites: powder preparation by mechanical alloying and selective laser melting behavior. Appl. Surf. Sci. 255, 9230–9240 (2009)

    Article  CAS  Google Scholar 

  23. K. Rzyman, Z. Moser, Calorimetric studies of the enthalpies of formation of Al3Ni2, AlNi and AlNi3. Prog. Mater Sci. 49, 581–606 (2004)

    Article  CAS  Google Scholar 

  24. Heguo Zhu, Yinglu Ai, Jianliang Li, Jing Min, Da Chu, Jun Zhao, Jie Chen, In situ fabrication of α-Al2O3 and Ni2Al3 reinforced aluminum matrix composites in an Al–Ni2O3 system. Adv. Powder Technol. 22, 629–633 (2011)

    Article  CAS  Google Scholar 

  25. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Borhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamnooni, S., Borhani, E. & Bovand, D. In-Situ Synthesis of Aluminum Matrix Composite from Al–NiO System by Mechanical Alloying. Met. Mater. Int. 27, 1631–1638 (2021). https://doi.org/10.1007/s12540-019-00549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00549-z

Keywords

Navigation