Skip to main content
Log in

Electropulsing Treatment on Enhancement of Electrical Conductivity of Screen-Printed Ag Wire

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 30 April 2020

This article has been updated

Abstract

The effect of high electric current density on the sintering of Ag wires manufactured by screen printing is evaluated through electrical resistivity analysis and microstructure observation. Different forms (continuous and pulsed) of electric current with different current densities are applied to the specimens. Conventional heat treatment is also performed as a control group to examine the athermal effect of electropulsing treatment. Compared to the conventional heat treatment, the resistivity is reduced more under the electropulsing treatment with continuous current for the same temperature and treatment time. Also, the process time of electropulsing treatment can be reduced by applying a pulse form of high density current instead of continuous current without losing the benefit of enhanced reduction of resistivity. The microstructural observations obtained from high angle annular dark field scanning transmission electron microscope and a digital precession instrument clearly show that necking connecting the crystals is formed more firmly under electric current. In addition, the temperature change of Ag wire and substrate is calculated according to the change of the resistivity when the electric current is applied to confirm the reliability.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. M.M. Nir, D. Zamir, I. Haymov, L. Ben-Asher, O. Cohen, B. Faulkner, F. De La Vega, The chemistry of inkjet inks, vol. 12, p. 225 (2010)

  2. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, J. Mater. Chem. 20, 8446 (2010)

    Article  CAS  Google Scholar 

  3. A. Kamyshny, J. Steinke, S. Magdassi, Open Appl. Phys. J. 4 (2011). https://doi.org/10.2174/s1874183501104010019

  4. G.O. Mallory, J.B. Hajdu, Electroless Plating: Fundamentals and Applications (William Andrew, Norwich, 1990)

    Google Scholar 

  5. A. Loi, Inkjet Printing: Technique and Applications for Organic Electronic Devices (Universita’degli studi di Caliari, Cagliari, 2014)

    Google Scholar 

  6. K. Suganuma, Introduction to Printed Electronics (Springer, Berlin, 2014)

    Book  Google Scholar 

  7. J. Lee, H.-C. Kim, J.-W. Choi, I.H. Lee, Int. J. Precis. Eng. Manuf. Green Technol. 4, 373 (2017)

    Article  Google Scholar 

  8. D. Wakuda, K.-S. Kim, K. Suganuma, I.E.E.E. Trans, Compon. Packag. Technol. 32, 627 (2009)

    Article  CAS  Google Scholar 

  9. W.L. Choi, J.-H. Lee, Met. Mater. Int. 25, 1388 (2019)

    Article  CAS  Google Scholar 

  10. Y.J. Yi, M.-J. Lee, J.-Y. Yun, B.K. Kim, Met. Mater. Int. 25, 1272 (2019)

    Article  CAS  Google Scholar 

  11. K.S. Siow, S.T. Chua, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00394-0

    Article  Google Scholar 

  12. S. Jang, Y. Seo, J. Choi, T. Kim, J. Cho, S. Kim, D. Kim, Scr. Mater. 62, 258 (2010)

    Article  CAS  Google Scholar 

  13. D. Kim, J. Moon, Electrochem. Solid State Lett. 8, J30 (2005)

    Article  CAS  Google Scholar 

  14. W.L. Choi, J.-H. Lee, Met. Mater. Int. 1 (2019). https://doi.org/10.1007/s12540-019-00293-4

  15. J. Mittal, K.-L. Lin, Mater. Charact. 109, 19 (2015)

    Article  CAS  Google Scholar 

  16. J. Niittynen, E. Sowade, H. Kang, R.R. Baumann, M. Mäntysalo, Sci. Rep. 5, 8832 (2015)

    Article  CAS  Google Scholar 

  17. L. Guan, G. Tang, Y. Jiang, P.K. Chu, J. Alloys Compd. 487, 309 (2009)

    Article  CAS  Google Scholar 

  18. S. Konovalov, A. Atroshkina, Y.F. Ivanov, V. Gromov, Mater. Sci. Eng. A 527, 3040 (2010)

    Article  Google Scholar 

  19. Z. Lai, H. Conrad, Y. Chao, S. Wang, J. Sun, Scr. Metall. 23, 305 (1989)

    Article  CAS  Google Scholar 

  20. E. Machlin, J. Appl. Phys. 30, 1109 (1959)

    Article  CAS  Google Scholar 

  21. R. Fan, J. Magargee, P. Hu, J. Cao, Mater. Sci. Eng. A 574, 218 (2013)

    Article  CAS  Google Scholar 

  22. M.-J. Kim, M.-G. Lee, K. Hariharan, S.-T. Hong, I.-S. Choi, D. Kim, K.H. Oh, H.N. Han, Int. J. Plast. 94, 148 (2017)

    Article  CAS  Google Scholar 

  23. J.-H. Roh, J.-J. Seo, S.-T. Hong, M.-J. Kim, H.N. Han, J.T. Roth, Int. J. Plast. 58, 84 (2014)

    Article  CAS  Google Scholar 

  24. M.-J. Kim, K. Lee, K.H. Oh, I.-S. Choi, H.-H. Yu, S.-T. Hong, H.N. Han, Scr. Mater. 75, 58 (2014)

    Article  CAS  Google Scholar 

  25. H. Conrad, Mater. Sci. Eng. A 287, 276 (2000)

    Article  Google Scholar 

  26. H.-S. Oh, H.-R. Cho, H. Park, S.-T. Hong, D.-M. Chun, Int. J. Precis. Eng. Manuf. Green Technol. 3, 161 (2016)

    Article  Google Scholar 

  27. N.T. Thien, Y.-H. Jeong, S.-T. Hong, M.-J. Kim, H.N. Han, M.-G. Lee, Int. J. Precis. Eng. Manuf. Green Technol. 3, 325 (2016)

    Article  Google Scholar 

  28. H.-J. Jeong, J.-W. Park, K.J. Jeong, N.M. Hwang, S.-T. Hong, H.N. Han, Int. J. Precis. Eng. Manuf. Green Technol. 6, 315 (2019)

    Article  Google Scholar 

  29. M.-J. Kim, H.-J. Jeong, J.-W. Park, S.-T. Hong, H.N. Han, Met. Mater. Int. 24, 42 (2018)

    Article  Google Scholar 

  30. H. Conrad, N. Karam, S. Mannan, A. Sprecher, Scr. Metall. 22, 235 (1988)

    Article  CAS  Google Scholar 

  31. H. Conrad, N. Karam, S. Mannan, Scr. Metall. 17, 411 (1983)

    Article  CAS  Google Scholar 

  32. T. Wang, J. Xu, T. Xiao, H. Xie, J. Li, T. Li, Z. Cao, Phys. Rev. E 81, 42601 (2010)

    Article  Google Scholar 

  33. H.-J. Jeong, M.-J. Kim, J.-W. Park, C.D. Yim, J.J. Kim, O.D. Kwon, P.P. Madakashira, H.N. Han, Mater. Sci. Eng. A 684, 668 (2017)

    Article  CAS  Google Scholar 

  34. J. Choi, H.-M. Sung, K.-B. Roh, S.-H. Hong, G.-H. Kim, H.N. Han, Int. J. Refract. Met. Hard Mater. 69, 164 (2017)

    Article  CAS  Google Scholar 

  35. J.-W. Park, H.-J. Jeong, S.-W. Jin, M.-J. Kim, K. Lee, J.J. Kim, S.-T. Hong, H.N. Han, Mater. Charact. 133, 70 (2017)

    Article  CAS  Google Scholar 

  36. V.T. Luu, T.K.A. Dinh, H. Das, J.-R. Kim, S.-T. Hong, H.-M. Sung, H.N. Han, Int J. Precis. Eng. Manuf. Green Technol. 5, 613 (2018)

    Article  Google Scholar 

  37. C.-L. Liang, K.-L. Lin, Mater. Charact. 145, 545 (2018)

    Article  CAS  Google Scholar 

  38. K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980)

    Article  CAS  Google Scholar 

  39. K. Hariharan, M.-G. Lee, M.-J. Kim, H.N. Han, D. Kim, S. Choi, Metall. Mater. Trans. A 46, 3043 (2015)

    Article  CAS  Google Scholar 

  40. https://en.wikipedia.org/wiki/Silver (cited on 18 September, 2019)

  41. M. Ashby, Material Profiles (Materials and the Environment, 2013)

  42. https://en.wikipedia.org/wiki/Copper (cited on 18 September, 2019)

  43. P.A. Tipler, G. Mosca, Physics for Scientists and Engineers (Macmillan, New York, 2007)

    Google Scholar 

  44. https://en.wikipedia.org/wiki/Thermal conductivities of the elements (data page)

  45. P. Warrier, A. Teja, Nanoscale Res. Lett. 6, 247 (2011)

    Article  Google Scholar 

  46. D. Giancoli, Electric Currents and Resistance, (Physics for Scientists and Engineers with Modern Physics 4, 2009)

  47. E.O. Ettu, Int. J. Eng. Dev. Res. 3, 2321 (2014)

    Google Scholar 

  48. J. Perelaer, A.W. De Laat, C.E. Hendriks, U.S. Schubert, J. Mater. Chem. 18, 3209 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. NRF- 2015R1A5A1037627). The Institute of Engineering Research at Seoul National University provided research facilities for this work. Also, this work was supported by manufacturing core technology team in global technology center of Samsung electronics co., ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Nam Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JW., Choi, H., Kim, H. et al. Electropulsing Treatment on Enhancement of Electrical Conductivity of Screen-Printed Ag Wire. Met. Mater. Int. 27, 1296–1304 (2021). https://doi.org/10.1007/s12540-019-00555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00555-1

Keywords

Navigation