Skip to main content
Log in

Dynamic Compression Behavior of a Mg–Gd-Based Alloy at Elevated Temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The dynamic compression behavior and microstructure evolution at 400 °C of an extruded Mg–8Gd–4Y–Nd–Zr alloy with different tempers were investigated. The peak-aged samples exhibit the highest compressive strength, followed by as-extruded samples and over-aged samples. The highest dynamic compressive strength of 582 MPa was achieved by peak-aged sample compressed at 1224 s−1. The high strength was attributed to the formation of abundant thermally stable βʹ precipitates and some dynamic precipitates. The dynamic compressive strength of peak-aged sample and over-aged sample is not sensitive to strain rates, while that of the as-extruded sample is sensitive to strain rates. The dynamic compressive strength of the as-extruded alloy can reach 535 MPa when compressed at 2024 s−1. The high strength was mainly ascribed to the formation of numerous dynamic precipitates and the work hardening effect caused by dislocations. The cracks are composed of crack that is 45° to loading direction on the cylindrical surface and crack on the compressed surface. Microstructure observation indicates that the crack was easily propagated along the interface between the adiabatic shear band and matrix, grain boundaries. The equilibrium phase β in over-aged sample was unable to hinder the crack propagation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Wen, K. Liu, Z.H. Wang, S.B. Li, W.B. Du, Mater. Sci. Eng. A 674, 33 (2016)

    Article  CAS  Google Scholar 

  2. H.M. Xie, B. Jiang, J.J. He, X.S. Xia, F.S. Pan, Tribol. Int. 93, 63 (2016)

    Article  CAS  Google Scholar 

  3. Y. Zou, L.H. Zhang, Y. Li, H.T. Wang, J.B. Liu, P.K. Liaw, H.B. Bei, Z.W. Zhang, J. Alloys Compd. 735, 2625 (2018)

    Article  CAS  Google Scholar 

  4. J.K. Zheng, R.C. Luo, X.Q. Zeng, B. Chen, Mater. Des. 137, 316 (2018)

    Article  CAS  Google Scholar 

  5. J. Sun, L. Jin, J. Dong, F.H. Wang, S. Dong, W.J. Ding, A.A. Luo, Int. J. Plast. (2019). https://doi.org/10.1016/j.ijplas.2019.07.014

  6. V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00346-8

  7. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 547, 93 (2012)

    Article  CAS  Google Scholar 

  8. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013)

    Article  CAS  Google Scholar 

  9. Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort, J. Meng, Mater. Sci. Eng. A 622, 121 (2015)

    Article  CAS  Google Scholar 

  10. C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, H.L. Xie, Metall. Mater. Trans. A 49, 1931 (2018)

    Article  CAS  Google Scholar 

  11. X.W. Heng, Y. Zhang, W. Rong, Y.J. Wu, L.M. Peng, Mater. Des. 169, 107666 (2019)

    Article  CAS  Google Scholar 

  12. S.J. Liu, K. Wang, J.F. Wang, S. Huang, S.Q. Gao, X. Peng, H. Hu, F.S. Pan, Mater. Sci. Eng. A 758, 96 (2019)

    Article  CAS  Google Scholar 

  13. W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, M. Sun, J. Chen, L.M. Peng, Mater. Sci. Eng. A 740–741, 262 (2019)

    Article  Google Scholar 

  14. W.S. Lee, W.C. Sue, C.F. Lin, C.J. Wu, J. Mater. Process. Technol. 100, 116 (2000)

    Article  Google Scholar 

  15. W.L. Zhang, X.F. Chen, B.C. Zhuo, P.J. Li, L.J. He, Mater. Sci. Eng. A 730, 336 (2018)

    Article  CAS  Google Scholar 

  16. P.L. Mao, J.C. Yu, Z. Liu, Y. Dong, J. Magn. Alloys 1, 64 (2013)

    Article  CAS  Google Scholar 

  17. J.C. Yu, Z. Liu, Y. Dong, Z. Wang, J. Magn. Alloys 3, 134 (2015)

    Article  CAS  Google Scholar 

  18. C.P. Tang, X.Z. Wang, W.H. Liu, D. Feng, K. Wu, C. Zhang, G.D. Miao, W.Y. Liang, J. Li, X. Liu, Q. Li, Mater. Sci. Eng. A 759, 172 (2019)

    Article  CAS  Google Scholar 

  19. S.M. Zhu, J.F. Nie, M.A. Gibson, M.A. Easton, Scr. Mater. 77, 21 (2014)

    Article  CAS  Google Scholar 

  20. X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, J.F. Nie, Mater. Sci. Eng. A 431, 322 (2006)

    Article  Google Scholar 

  21. X.M. Zhang, C.P. Tang, Y.L. Deng, L. Yang, W.J. Liu, J. Alloys Compd. 509, 6170 (2011)

    Article  CAS  Google Scholar 

  22. C.P. Tang, W.H. Liu, Y.Q. Chen, X. Liu, Y.L. Deng, Mater. Sci. Eng. A 659, 63 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial supports from National Natural Science Foundation of China (Grant Nos. 51605159 and 51601062), and Hunan Provincial Natural Science Foundation of China (Grant No. 2016JJ5042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changping Tang or Wenhui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Wu, K., Liu, W. et al. Dynamic Compression Behavior of a Mg–Gd-Based Alloy at Elevated Temperature. Met. Mater. Int. 27, 1438–1447 (2021). https://doi.org/10.1007/s12540-019-00558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00558-y

Keywords

Navigation