Skip to main content
Log in

Electrochemical Polishing of Additively Manufactured Ti–6Al–4V Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this present paper, the electropolishing behavior of Ti–6Al–4V alloy fabricated by additive manufacturing in chloride-containing ethylene glycol electrolyte was surveyed. The impacts of chloride ion on surface quality and oxide film of Ti–6Al–4V were analyzed in dependence on the surface topography, roughness, weight loss ratio and compositions. The visual and microscopic results revealed that the optimally electropolished surface was attained in a 0.4 mol L−1 chloride electrolyte with a decreased surface roughness of 75.04% and a weight loss rate of 4.93%. For lower (C−1Cl ≤ 0.3 mol L−1) or higher concentrations (C−1Cl ≥ 0.5 mol L−1), a smooth and flat surface was not observed due to insufficient reactions or excessive anodic dissolution. During the electropolishing, the titanium oxides nucleated and corresponding surface tension increased, resulting in the formation of a stable TiO2 film on the surface of the Ti–6Al–4V alloy, increasing the corrosion resistance of the specimen.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Mumith, M. Thomas, Z. Shah, M. Coathup, G. Blunn, Bone Joint J. 100B, 455 (2018)

    Article  Google Scholar 

  2. S.H. Huang, P. Liu, A. Mokasdar, H. Liang, Int. J. Adv. Manuf. Technol. 67, 1191 (2013)

    Article  Google Scholar 

  3. A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor, Precis. Eng. 46, 34 (2016)

    Article  Google Scholar 

  4. A.R. Nassar, E.W. Reutzel, Metall. Mater. Trans. A 46, 2781 (2015)

    Article  CAS  Google Scholar 

  5. C. Achillas, D. Aidonis, E. Iakovou, M. Thymianidis, D. Tzetzis, J. Manuf. Syst. 37, 328 (2015)

    Article  Google Scholar 

  6. L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, Mater. Sci. Eng. A 527, 1861 (2010)

    Article  Google Scholar 

  7. M. Pattabi, K. Ramakrishna, Mater. Sci. Eng. A 486, 14 (2008)

    Article  Google Scholar 

  8. Z.Y. Zhang, Z.F. Shi, Y.F. Du, Appl. Surf. Sci. 427, 409 (2018)

    Article  CAS  Google Scholar 

  9. D. Wang, Y. Yang, Z. Yi, X. Su, Int. J. Adv. Manuf. Technol. 65, 1471 (2013)

    Article  Google Scholar 

  10. G.A. Longhitano, M.A. Larosa, A.L.J. Munhoz, C.A.C. Zavaglia, M.C.F. Ierardia, Mater. Res. 18, 838 (2015)

    Article  CAS  Google Scholar 

  11. S. Bagehorn, J. Wehr, S. Nixon, A. Balastrier, T. Mertens, H.J. Maier, in Solid Freeform Fabrication (2017), pp. 2516–2529

  12. P. Grzegorz, A. Burakowski, G. Kerckhofs, M. Moesen, S.V. Bael, J. Schrooten, M. Wevers, Adv. Eng. Mater. 14, 363 (2012)

    Article  Google Scholar 

  13. Ramver, A. Dvivedi, P. Kumar, in TMS 2019 148th Annual Meeting and Exhibition Supplemental Proceedings: The Minerals, Metals and Materials Series (Springer, Cham, 2019), pp. 745–753

  14. H. Ramasawmy, L. Blunt, Int. J Mach. Tool Manuf. 42, 1129 (2002)

    Article  Google Scholar 

  15. V. Urlea, V. Brailovski, J. Mater. Process. Technol. 242, 1 (2017)

    Article  CAS  Google Scholar 

  16. A. Kuhn, Met. Finish. 102, 80 (2004)

    Article  CAS  Google Scholar 

  17. J.Q. Li, X. Lin, M. Zheng, J. Wang, P.F. Guo, T. Qin, M.H. Zhu, W.D. Huang, H.O. Yang, Electrochim. Acta 283, 1482 (2018)

    Article  CAS  Google Scholar 

  18. D. Babilasa, E. Urbanczyka, M. Sowa, Electrochim. Acta 205, 256 (2016)

    Article  Google Scholar 

  19. Y.F. Zhang, J.Z. Li, S.H. Che, Int. J. Electrochem. Sci. 13, 4792 (2018)

    Article  CAS  Google Scholar 

  20. K. Fushimi, M. Stratmann, A.W. Hassel, Electrochim. Acta 52, 1290 (2006)

    Article  CAS  Google Scholar 

  21. Y.L. Cheng, J.H. Cao, M.K. Mao, H.J. Xie, P. Skeldon, Surf. Coat. Technol. 291, 239 (2016)

    Article  CAS  Google Scholar 

  22. M.H. Hong, D.H. Lee, K.M. Kim, Y.K. Lee, Thin Solid Films 519, 7065 (2011)

    Article  CAS  Google Scholar 

  23. K.S. Lee, I.S. Park, Scr. Mater. 48, 659 (2003)

    Article  CAS  Google Scholar 

  24. E.A. Ferreira, N.T.C. Oliveira, S.R. Biaggio, P.A.P. Nascente, R.C. Rocha, N. Bocchi, Surf. Interface Anal. 38, 417 (2006)

    Article  CAS  Google Scholar 

  25. N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. Wu, Corros. Sci. 102, 484 (2018)

    Article  Google Scholar 

  26. G.A. Zhang, Y.F. Cheng, Electrochim. Acta 55, 316 (2009)

    Article  CAS  Google Scholar 

  27. I.J. Hwang, H.C. Choe, W.A. Brantley, Surf. Coat. Technol. 320, 458 (2017)

    Article  CAS  Google Scholar 

  28. Y. Wang, K.Y. Li, F. Scenini, J. Jiao, S.J. Qu, Q. Luo, J. Shen, Surf. Coat. Technol. 302, 27 (2016)

    Article  Google Scholar 

  29. W. Simka, M. Kaczmarek, A.B. Wiechec, G. Nawrat, J. Marciniak, J. Zak, Electrochim. Acta 55, 2437 (2010)

    Article  CAS  Google Scholar 

  30. A.K. Shukla, R. Balasubramaniam, S. Bhargava, Intermetallics 13, 631 (2005)

    Article  CAS  Google Scholar 

  31. F.T. Cheng, P. Shi, H.C. Man, Surf. Coat. Technol. 187, 26 (2004)

    Article  CAS  Google Scholar 

  32. M. Shunmugavel, A. Polishetty, M. Goldberg, R. Singh, G.A. Littlefair, Prototyp. J. 23, 1051 (2017)

    Article  Google Scholar 

  33. N. Hrabe, T. Quinn, Mater. Sci. Eng. A 573, 271 (2013)

    Article  CAS  Google Scholar 

  34. E. Godlewska, M. Mitoraj, K. Leszczynska, Corros. Sci. 78, 63 (2014)

    Article  CAS  Google Scholar 

  35. S. Kim, S. Park, Y. Jeong, J. Am. Ceram. Soc. 82, 927 (1999)

    Article  CAS  Google Scholar 

  36. D. Kim, K. Son, D. Sung, Y. Kim, W. Chung, Corros. Sci. 98, 494 (2015)

    Article  CAS  Google Scholar 

  37. I.W. Kim, M.D. Jang, Y.K. Ryu, E.H. Cho, Y.K. Lee, J.H. Park, Anal. Sci. 18, 1357 (2002)

    Article  CAS  Google Scholar 

  38. A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J. Mater. Chem. 11, 1116 (2001)

    Article  CAS  Google Scholar 

  39. M. Pankuch, R. Bell, C.A. Melendrizs, Electrochim. Acta 38, 2777 (1993)

    Article  CAS  Google Scholar 

  40. X. Liu, P.K. Chu, C. Ding, Mater. Sci. Eng. R Rep. 47, 49 (2004)

    Article  Google Scholar 

  41. Q.B. Li, W.B. Yang, C.C. Liu, D.A. Wang, J. Liang, Surf. Coat. Technol. 316, 162 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51974069); and the Iron and Steel Joint Research Found of National Natural Science Foundation and China Baowu Steel Group Corporation Limited (Grant No. U1760118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, J., Che, S. et al. Electrochemical Polishing of Additively Manufactured Ti–6Al–4V Alloy. Met. Mater. Int. 26, 783–792 (2020). https://doi.org/10.1007/s12540-019-00556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00556-0

Keywords

Navigation