Skip to main content
Log in

Progress in synthesis and application of zwitterionic Gemini surfactants

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Zwitterionic Gemini surfactants have the Gemini molecular structure in which there are both multiple lipophilic groups and multiple hydrophilic groups. However, their hydrophilic groups have different charges. Due to the special molecular structure, this kind of surfactants possesses excellent properties, including high surface activities, isoelectric point (IP), low critical micelle concentration (CMC), less toxicity, low irritating, biodegradability, bioactive, interface modification, and so on. In this review, synthetic strategies of three kinds of zwitterionic Gemini surfactants, i.e., anioniccationic, cationic-nonionic and anionic-nonionic Gemini surfactants, are discussed, and their potential applications in life sciences, chemical industry and enhanced oil recovery (EOR) are illustrated. Their future development is also prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bunton C A, Robinson L, Schaak J, et al. Catalysis of nucleophilic substitutions by micelles of dicationic detergents. Journal of Organic Chemistry 1971, 36(16): 2346–2350

    Article  CAS  Google Scholar 

  2. Menger F M, Littau C A. Gemini surfactants: Synthesis and properties. Journal of the American Chemical Society 1991, 113 (4): 1451–1452

    Article  CAS  Google Scholar 

  3. Kumar N, Tyagi R. Industrial applications of dimeric surfactants: A review. Journal of Dispersion Science and Technology 2014, 35 (2): 205–214

    Article  CAS  Google Scholar 

  4. Ao M, Xu G, Pang J, et al. Comparison of aggregation behaviors between ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im]Br2 and its monomer [C12mim]Br on silicon wafer. Langmuir 2009, 25(17): 9721–9727

    Article  CAS  Google Scholar 

  5. Huang Z, Cheng C, Liu Z, et al. Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation. Bioresource Technology 2019, 275: 421–424

    Article  CAS  Google Scholar 

  6. Liu J M, Ma X Y, Zhang S J, et al. Cationic gemini surfactant templated magnetic cubic mesoporous silica and its application in the magnetic dispersive solid phase extraction of endocrinedisrupting compounds from the migrants of food contact materials. Microchemical Journal 2019, 145: 606–613

    Article  CAS  Google Scholar 

  7. Zhang S, Xu T, Liu Q, et al. Cationic gemini surfactant-resorcinolaldehyde resin and its application in the extraction of endocrine disrupting compounds from food contacting materials. Food Chemistry 2019, 277: 407–413

    Article  CAS  Google Scholar 

  8. Sharma R, Kamal A, Abdinejad M, et al. Advances in the synthesis, molecular architectures and potential applications of Gemini surfactants. Advances in Colloid and Interface Science 2017, 248: 35–68

    Article  CAS  Google Scholar 

  9. Hussain S M S, Fogang L T, Kamal M S. Synthesis and performance evaluation of betaine type zwitterionic surfactants containing different degrees of ethoxylation. Journal of Molecular Structure 2018, 1173: 983–989

    Article  CAS  Google Scholar 

  10. Xue C L, Zhu H L, Zhang T T, et al. Synthesis and properties of novel alkylbetaine zwitterionic gemini surfactants derived from cyanuric chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 375(1–3): 141–146

    Article  CAS  Google Scholar 

  11. Li P, Yang C, Cui Z, et al. A new type of sulfobetaine surfactant with double alkyl polyoxyethylene ether chains for enhanced oil recovery. Journal of Surfactants and Detergents 2016, 19(5): 967–977

    Article  CAS  Google Scholar 

  12. Muggeridge A, Cockin A, Webb K, et al. Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 2014, 372(2006): 20120320

    Article  CAS  Google Scholar 

  13. Olajire A A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77(SI): 963–982

    Article  CAS  Google Scholar 

  14. Ren Z H, Chen D J, Luo Y. Adsorption of amino sulfonate amphoteric surfactants on quartz sand. China Surfactant Detergent & Cosmetics 2010, 40(6): 410–413 (in Chinese)

    CAS  Google Scholar 

  15. Guttmann AT. Sulfoalkylated imidazolines. US Patent, 3244724, 1966-04-05

  16. Yoshimura T, Ichinokawa T, Kaji M, et al. Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 273(1–3): 208–212

    Article  CAS  Google Scholar 

  17. Hirao M, Ito-Akita K, Ohno H. Polymerization of molten salt monomers having a phenylimidazolium group. Polymers for Advanced Technologies 2000, 11(8–12): 534–538

    Article  CAS  Google Scholar 

  18. Hirao M, Sugimoto H, Ohno H. Preparation of novel roomtemperature molten salts by neutralization of amines. Journal of the Electrochemical Society 2000, 147(11): 4168–4172

    Article  CAS  Google Scholar 

  19. Hirao M, Ito K, Ohno H. Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochimica Acta 2000, 45(8–9): 1291–1294

    Article  CAS  Google Scholar 

  20. Zheng Y C, Ren Z H, Mei P, et al. Interactions between a sulfobetaine-type zwitterionic Gemini surfactant and fatty acid alkanolamide in aqueous micellar solution. Journal of Surfactants and Detergents 2016, 19(2): 283–288

    Article  CAS  Google Scholar 

  21. Nyuta K, Yoshimura T, Esumi K. Surface tension and micellization properties of heterogemini surfactants containing quaternary ammonium salt and sulfobetaine moiety. Journal of Colloid and Interface Science 2006, 301(1): 267–273

    Article  CAS  Google Scholar 

  22. Perroni D V, Mahanthappa M K. Inverse Pmn cubic micellar lyotropic phases from zwitterionic triazolium Gemini surfactants. Soft Matter 2013, 9(33): 7919–7922

    Article  CAS  Google Scholar 

  23. Yoshizawa M, Hirao M, Ito-Akita K, et al. Ion conduction in zwitterionic-type molten salts and their polymers. Journal of Materials Chemistry 2001, 11(4): 1057–1062

    Article  CAS  Google Scholar 

  24. Feng J, Liu X P, Zhang L, et al. Dilational viscoelasticity of the zwitterionic Gemini surfactants with polyoxyethylene spacers at the interfaces. Journal of Dispersion Science and Technology 2011, 32(11): 1537–1546

    Article  CAS  Google Scholar 

  25. Geng X F, Hu X Q, Xia J J, et al. Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic Gemini surfactants. Applied Surface Science 2013, 271: 284–290

    Article  CAS  Google Scholar 

  26. Qu G M, Hu X Q, Xia J J. Study on synthesis and properties of sulfonate zwitterionic Gemini surfactants. In: Chinese Chemical Society. The 30th Annual Meeting of the Chinese Chemical Society - 31st Chapter: Colloids and Interface Chemistry, 2016, 1

    Google Scholar 

  27. Bordes R, Holmberg K. Amino acid-based surfactants - do they deserve more attention?. Advances in Colloid and Interface Science 2015, 222: 79–91

    Article  CAS  Google Scholar 

  28. Xie Z F, Feng Y J. Synthesis and properties of alkylbetaine zwitterionic Gemini surfactants. Journal of Surfactants and Detergents 2010, 13(1): 51–57

    Article  CAS  Google Scholar 

  29. Lu H, Xue M, Wang B, et al. pH-Regulated surface property and pH-reversible micelle transition of a tertiary amine-based Gemini surfactant in aqueous solution. Soft Matter 2015, 11(47): 9135–9143

    Article  CAS  Google Scholar 

  30. Lu H, Zheng C, Xue M, et al. pH-Regulated surface properties and pH-reversible micelle transition of a zwitterionic Gemini surfactant in aqueous solution. Physical Chemistry Chemical Physics 2016, 18(47): 32192–32197

    Article  CAS  Google Scholar 

  31. Zhou M, Luo G, Wang X W, et al. Synthesis and surface active properties of tri[(N-alkyl-N-ethyl-N-sodium carboxymethyl)-2-ammonium bromide ethylene] amines. Journal of Surfactants and Detergents 2015, 18(5): 837–844

    Article  CAS  Google Scholar 

  32. Zhou M, Huang Z, Yu S, et al. Synthesis and surface active properties of novel oligomer betaine surfactants. Tenside, Surfactants, Detergents 2016, 53(2): 134–139

    Article  CAS  Google Scholar 

  33. Jaeger D A, Li B, Clark T. Cleavable double-chain surfactants with one cationic and one anionic head group that form vesicles. Langmuir 1996, 12(18): 4314–4316

    Article  CAS  Google Scholar 

  34. Nyuta K, Yoshimura T, Tsuchiya K, et al. Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups 2: aggregation behavior studied by SANS, DLS, and cryo-TEM. Journal of Colloid and Interface Science 2012, 370(1): 80–85

    Article  CAS  Google Scholar 

  35. Yoshimura T, Nyuta K, Esumi K. Zwitterionic heterogemini surfactants containing ammonium and carboxylate headgroups. 1. Adsorption and micellization. Langmuir 2005, 21(7): 2682–2688

    CAS  Google Scholar 

  36. Nayak B B, Patel S, Behera P K, et al. A novel class of zwitterionic Gemini surfactants. ARKIVOC 2006, 14: 22–27

    Google Scholar 

  37. Zhou T, Zhao J. Synthesis and thermotropic liquid crystalline properties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group. Journal of Colloid and Interface Science 2009, 331(2): 476–483

    Article  CAS  Google Scholar 

  38. Zhou T, Zhao J. Synthesis and thermotropic liquid crystalline properties of zwitterionic gemini surfactants containing a quaternary ammonium and a sulfate group. Journal of Colloid and Interface Science 2009, 338(1): 156–162

    Article  CAS  Google Scholar 

  39. Peresypkin A V, Menger F M. Zwitterionic geminis. Coacervate formation from a single organic compound. Organic Letters 1999, 1(9): 1347–1350

    CAS  Google Scholar 

  40. Kumar A, Alami E, Holmberg K, et al. Branched zwitterionic gernini surfactants micellization and interaction with ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 228(1–3): 197–207

    Article  CAS  Google Scholar 

  41. Ansari W H, Noori S, Naqvi A Z, et al. Interaction between zwitterionic surfactants and amphiphilic drug: A tensiometric study. Zeitschrift für Physikalische Chemie - International Journal of Research in Physical Chemistry & Chemical Physics 2013, 227 (4): 441–458

    CAS  Google Scholar 

  42. Mobin M, Noori S. Adsorption and corrosion inhibition behaviour of zwitterionic Gemini surfactant for mild steel in 0.5 M HCl. Tenside, Surfactants, Detergents 2016, 53(4): 357–367

    Article  CAS  Google Scholar 

  43. Sun Y, Feng Y, Dong H, et al. Synthesis and aqueous solution properties of homologous Gemini surfactants with different head groups. Central European Journal of Chemistry 2007, 5(2): 620–634

    CAS  Google Scholar 

  44. Dong Z, Zheng Y, Zhao J. Synthesis, physico-chemical properties and enhanced oil recovery flooding evaluation of novel zwitterionic Gemini surfactants. Journal of Surfactants and Detergents 2014, 17(6): 1213–1222

    Article  CAS  Google Scholar 

  45. Li Y R, Cao B, Ye W. Study on the synthetic process of new type of hydroxyl-containing phosphonate quaternary ammonium salt amphoteric surfactant. Speciality Petrochemicals 1991, (6): 14–17 (in Chinese)

    Google Scholar 

  46. Feng D Q, Liu G, Ma G, et al. Phosphodiesters quaternary ammonium nanoparticles as label-free light scattering probe for turn-off detection of tyrosine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 208: 1–6

    Article  CAS  Google Scholar 

  47. Chen X, Liang S, Zhu L, et al. High-sensitivity determination of curcumin in human urine using gemini zwitterionic surfactant as a probe by resonance light scattering technique. Phytochemical Analysis 2012, 23(5): 456–461

    Article  CAS  Google Scholar 

  48. Cherkasov R A, Galkin V I. The Kabachnik-Fields reaction: synthetic potential and the problem of the mechanism. Russian Chemical Reviews 1998, 67(10): 857–882

    Article  Google Scholar 

  49. Yoshimura T, Nyuta K. Dynamic surface tension of heterogemini surfactants with quaternary ammonium salt and gluconamide or sulfobetaine headgroups. Journal of Oleo Science 2017, 66(10): 1139–1147

    Article  CAS  Google Scholar 

  50. Rist O, Rike A, Ljones L, et al. Synthesis of novel diammonium gemini surfactants. Molecules 2001, 6(12): 979–987

    Article  CAS  Google Scholar 

  51. Nyuta K, Yoshimura T, Tsuchiya K, et al. Adsorption and aggregation properties of heterogemini surfactants containing a quaternary ammonium salt and a sugar moiety. Langmuir 2006, 22(22): 9187–9191

    Article  CAS  Google Scholar 

  52. Zhang J X, Zheng Y P, Yu P Y, et al. Synthesis, characterization and surface-activity of a polyoxyethylene ether trimeric quaternary ammonium surfactant. Journal of Surfactants and Detergents 2010, 13(2): 155–158

    Article  CAS  Google Scholar 

  53. Renouf P, Mioskowski C, Lebeau L, et al. Dimeric surfactants: First synthesis of an asymmetrical gemini compound. Tetrahedron Letters 1998, 39(11): 1357–1360

    Article  CAS  Google Scholar 

  54. Alami E, Holmberg K, Eastoe J. Adsorption properties of novel gemini surfactants with nonidentical head groups. Journal of Colloid and Interface Science 2002, 247(2): 447–455

    Article  CAS  Google Scholar 

  55. Lai C C, Chen K M. Preparation and surface activity of polyoxyethylene-carboxylated modified Gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 320(1–3): 6–10

    Article  CAS  Google Scholar 

  56. Shen Z, Li Y, Sha O, et al. Synthesis and properties of nonionic-anionic gemini surfactants with high activity. Advances in Fine Petrochemicals 2011, 12(09): 25–29

    CAS  Google Scholar 

  57. Egan E A, Notter R H, Kwong M S, et al. Natural and artificial lung surfactant replacement therapy in premature lambs. Journal of Applied Physiology: Respiratory Environmental and Exercise Physiology, 1983, 55(3): 875–883

    Article  CAS  Google Scholar 

  58. Naqvi A Z, Noori S, Kabir-ud-Din. Effect of surfactant structure on the mixed micelle formation of cationic gemini-zwitterionic phospholipid systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 477: 9–18

    Article  CAS  Google Scholar 

  59. Noori S, Naqvi A Z, Ansari W H, et al. Effect of asymmetric dimeric zwitterionic surfactants on micellization behavior of amphiphilic drugs. Journal of Solution Chemistry 2015, 44(6): 1292–1309

    Article  CAS  Google Scholar 

  60. Qu Z. Applications of H-phosphonates in synthesis of phosphorus-containing functional compounds. Dissertation for the Doctoral Degree. Zhengzhou, China: Zhengzhou University, 2012 (in Chinese)

    Google Scholar 

  61. Lukác M, Mojzis J, Mojzisová G, et al. Dialkylamino and nitrogen heterocyclic analogues of hexadecylphosphocholine and cetyltrimetylammonium bromide: effect of phosphate group and environment of the ammonium cation on their biological activity. European Journal of Medicinal Chemistry 2009, 44(12): 4970–4977

    Article  CAS  Google Scholar 

  62. Strickley R G. Solubilizing excipients in oral and injectable formulations. Pharmaceutical Research 2004, 21(2): 201–230

    Article  CAS  Google Scholar 

  63. Blanzat M, Perez E, Rico-Lattes I, et al. New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and Gemini catanionic analogues of galactosylceramide (galα1cer). Langmuir, 1999, 15(19): 6163–6169

    Article  CAS  Google Scholar 

  64. Wang F, Hu S. Direct electron-transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H2O2 detection. Colloids and Surfaces B: Biointerfaces 2008, 63(2): 262–268

    Article  CAS  Google Scholar 

  65. Tiecco M, Cardinali G, Roscini L, et al. Biocidal and inhibitory activity screening of de novo synthesized surfactants against two eukaryotic and two prokaryotic microbial species. Colloids and Surfaces B: Biointerfaces 2013, 111: 407–417

    Article  CAS  Google Scholar 

  66. Choi H, Liu T, Qiao H, et al. Biomimetic nano-surfactant stabilizes sub-50 nanometer phospholipid particles enabling high paclitaxel payload and deep tumor penetration. Biomaterials 2018, 181: 240–251

    Article  CAS  Google Scholar 

  67. Kaur R, Kumar S, Aswal V K, et al. Influence of headgroup on the aggregation and interactional behavior of twin-tailed cationic surfactants with pluronics. Langmuir 2013, 29(38): 11821–11833

    Article  CAS  Google Scholar 

  68. Wang X C, Wang X Q, Qing T T. The application of Gemini surfactant in leather industry. Leather Science and Engineering 2015, 25(3): 32–37 (in Chinese)

    CAS  Google Scholar 

  69. Cai M, Zhang M, Ma P. Synthesis and applications of alkylbenzene sulfonate gemini surfactants. Journal of Dispersion Science and Technology 2010, 31(12): 1633–1637

    Article  CAS  Google Scholar 

  70. Fischer P, Wu H. Morphological transitions in dilute solutions of sugar-based zwitterionic dimer betaine surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 326 (1–2): 103–108

    Article  CAS  Google Scholar 

  71. Chen K, Locke D C, Maldacker T, et al. Separation of ergot alkaloids by micellar electrokinetic capillary chromatography using cationic Gemini surfactants. Journal of Chromatography A 1998, 822(2): 281–290

    Article  CAS  Google Scholar 

  72. Van der Voort P, Vansant E F. The synthesis of stable, hydrophobic MCM-48/VOx catalysts, using alkylchlorosilanes as coupling agents for the molecular designed dispersion of VO (acac)2. Microporous and Mesoporous Materials 2000, 38(2–3): 385–390

    Article  CAS  Google Scholar 

  73. Chen S, Liu H, Sun H, et al. Synthesis and physiochemical performance evaluation of novel sulphobetaine zwitterionic surfactants from lignin for enhanced oil recovery. Journal of Molecular Liquids 2018, 249: 73–82

    Article  CAS  Google Scholar 

  74. Pal N, Saxena N, Mandal A. Synthesis, characterization, and physicochemical properties of a series of quaternary Gemini surfactants with different spacer lengths. Colloid & Polymer Science 2017, 295(12): 2261–2277

    CAS  Google Scholar 

  75. Shehzad F, Hussein I A, Kamal M S, et al. Polymeric surfactants and emerging alternatives used in the demulsification of produced water: A review. Polymer Reviews 2018, 58(1): 63–101

    Article  CAS  Google Scholar 

  76. Lu J, Goudarzi A, Chen P, et al. Enhanced oil recovery from hightemperature, high-salinity naturally fractured carbonate reservoirs by surfactant flood. Journal of Petroleum Science and Engineering 2014, 124: 122–131

    Article  CAS  Google Scholar 

  77. Hussain S M S, Kamal M S, Fogang L T. Effect of internal olefin on the properties of betaine-type zwitterionic surfactants for enhanced oil recovery. Journal of Molecular Liquids 2018, 266: 43–50

    Article  CAS  Google Scholar 

  78. Tagavifar M, Xu K, Jang S H, et al. Spontaneous and flow-driven interfacial phase change: dynamics of microemulsion formation at the pore scale. Langmuir 2017, 33(45): 13077–13086

    Article  CAS  Google Scholar 

  79. Madani M, Zargar G, Takassi M A, et al. Fundamental investigation of an environmentally-friendly surfactant agent for chemical enhanced oil recovery. Fuel 2019, 238: 186–197

    Article  CAS  Google Scholar 

  80. Takassi M A, Zargar G, Madani M, et al. The preparation of an amino acid-based surfactant and its potential application as an EOR agent. Petroleum Science and Technology 2017, 35(4): 385–391

    Article  CAS  Google Scholar 

  81. Shadizadeh S S, Kharrat R. Experimental investigation of matricaria chamomilla extract effect on oil-water interfacial tension: usable for chemical enhanced oil recovery. Petroleum Science and Technology 2015, 33(8): 901–907

    Article  CAS  Google Scholar 

  82. Al-Sabagh A M. Surface activity and thermodynamic properties of water-soluble polyester surfactants based on 1,3-dicarboxymethoxybenzene used for enhanced oil recovery. Polymers for Advanced Technologies 2000, 11(1): 48–56

    Article  CAS  Google Scholar 

  83. Cao X C, Li Y Y, Ke K. Research progress in application of surfactants in petroleum engineering. Contemporary Chemical Industry 2017, 46(6): 1222–1224, 1234 (in Chinese)

    Google Scholar 

  84. Kamal M S, Hussein I A, Sultan A S. Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy & Fuels 2017, 31(8): 7701–7720

    Article  CAS  Google Scholar 

  85. Pal S, Mushtaq M, Banat F, et al. Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives. Petroleum Science 2018, 15(1): 77–102

    Article  CAS  Google Scholar 

  86. Raffa P, Broekhuis A A, Picchioni F. Polymeric surfactants for enhanced oil recovery: A review. Journal of Petroleum Science Engineering 2016, 145: 723–733

    Article  CAS  Google Scholar 

  87. Ren H J, Chen W, Wang X H. Synthesis and application performance of amphiprotic gemini surface active agent. Applied Chemical Industry 2019, 48(3): 613–615 (in Chinese)

    Google Scholar 

  88. Yan L M, Ma J, Li Y L, et al. Surface and interfacial properties of 1,3-dialkyl glyceryl ether hydroxypropyl sulfonates as surfactants for enhanced oil recovery. Journal of Dispersion Science and Technology 2018, 39(9): 1335–1343

    Article  CAS  Google Scholar 

  89. Almahfood M, Bai B. The synergistic effects of nanoparticlesurfactant nanofluids in EOR applications. Journal of Petroleum Science Engineering 2018, 171: 196–210

    Article  CAS  Google Scholar 

  90. Bracic M, Fras-Zemljic L, Kogej K, et al. Bioactive nano-coatings from hyaluronic acid and a lysine-derived surfactant. Abstracts of Papers of the American Chemical Society 2017, 253: 480

    Google Scholar 

  91. Chen X, Liu J B, Chen Y. Properties of nano-CaCO3 modified by a serious of phosphate surfactants and their application in PVC. Journal of Southern Yangtze University (Natural Science Edition) 2002, 1(3): 266–268 (in Chinese)

    Google Scholar 

  92. El Achouri M, Kertit S, Gouttaya H M, et al. Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide). Progress in Organic Coatings 2001, 43(4): 267–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiao Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Yang, Y., Niu, C. et al. Progress in synthesis and application of zwitterionic Gemini surfactants. Front. Mater. Sci. 13, 242–257 (2019). https://doi.org/10.1007/s11706-019-0473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0473-0

Keywords

Navigation