Skip to main content

Advertisement

Log in

Investigation of degradation of polypropylene in soil using an enzymatic additive

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polypropylene (PP) has been widely used industrially in several sectors, mainly in the use of packaging of different products. Thus, this has been accumulated in our environment due to the incorrect disposal and its high resistance toward degradation, causing an array of environmental impacts. With this, one alternative that has been explored to minimize the problems intensified by these residues is the use of pro-degrading additives. Therefore, the aim of this work is to evaluate the degradation process of PP blends in soil using enzymatic additive. The soil degradation experiment was done for 6 months; monthly collected samples were checked for alterations on the material properties during that time. The extent of PP degradation with enzymatic additive was compared to an organic additive by techniques of FTIR, TGA, DSC, carbonyl index (CI), and crystallinity. From the obtained results it was observed that the additives influenced the degradation of PP. In addition, the enzymatic additive caused more significant changes in the CI (increase of 3693%), crystallinity (variation of 18.7%), and structural characteristics, indicating a greater influence on the degradation process in relation to the organic additive. In this way, this work has had an important role in the research and development of biodegradable materials with the aim of minimizing the effects induced by plastic waste in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HM (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation – A review. Environ Int 124:336–353

    CAS  PubMed  Google Scholar 

  2. Jose J, Nag A, Nando GB (2014) Environmental ageing studies of impact modified waste polypropylene. Iran Polym J 23:619–636

    CAS  Google Scholar 

  3. ABIPLAST (2018) Perfil 2017 da Indústria brasileira de transformação e reciclagem de material plástico. Indústria Bras Transform e Reciclagem Mater Plástico 1–43

  4. Miyazaki K, Arai T, Shibata K, Terano M, Nakatani H (2012) Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polym Degrad Stab 97:2177–2184

    CAS  Google Scholar 

  5. Rosevelt C, Los Huertos M, Garza C, Nevins HM (2013) Marine debris in central California: quantifying type and abundance of beach litter in Monterey Bay, CA. Mar Pollut Bull 71:299–306

    CAS  PubMed  Google Scholar 

  6. Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou EV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149:536–542

    CAS  PubMed  Google Scholar 

  7. Lazarevic D, Aoustin E, Buclet N, Brandt N (2010) Plastic waste management in the context of a European recycling society: comparing results and uncertainties in a life cycle perspective. Resour Conserv Recycl 55:246–259

    Google Scholar 

  8. Faria AU, Martins-Franchetti SM (2010) Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do Rio Atibaia. Polímeros 20:141–147

    Google Scholar 

  9. Wan L, Zhou S, Zhang Y (2019) Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid. Int J Biol Macromol 125:1093–1102

    CAS  PubMed  Google Scholar 

  10. Ganapathy K, Ramasamy R, Dhinakarasamy I (2018) Polyhydroxybutyrate production from marine source and its application. Int J Biol Macromol 111:102–108

    CAS  Google Scholar 

  11. Chen DR, Bei JZ, Wang SG (2000) Polycaprolactone microparticles and their biodegradation. Polym Degrad Stab 67:455–459

    CAS  Google Scholar 

  12. Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJ, Bento FM, Camargo FA (2009) Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stab 94:965–970

    CAS  Google Scholar 

  13. Rosa D, Penteado D, Calil M (2000) Propriedades térmicas e biodegradabilidade de PCL e PHB em um pool de fungos. Polímeros Ciência e Tecnol 15:75–80

    Google Scholar 

  14. Liu X, Gao C, Sangwan P, Yu L, Tong Z (2014) Accelerating the degradation of polyolefins through additives and blending. J Appl Polym Sci 131:9001–9015

    Google Scholar 

  15. Contat-Rodrigo L (2013) Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym Degrad Stab 98:2117–2124

    CAS  Google Scholar 

  16. Miyazaki K, Nakatani H (2009) Preparation of degradable polypropylene by an addition of poly(ethylene oxide) microcapsule containing TiO2. Polym Degrad Stab 94:2114–2120

    CAS  Google Scholar 

  17. Fontanella S, Bonhomme S, Brusson JM, Pitteri S, Samuel G, Pichon G, Lacoste J, Fromageot D, Lemaire J, Delort AM (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym Degrad Stab 98:875–884

    CAS  Google Scholar 

  18. Thomas NL, Clarke J, McLauchlin AR, Patrick SG (2012) Oxo-degradable plastics: degradation, environmental impact and recycling. Proc Inst Civ Eng Waste Resour Manag 165:133–140

    CAS  Google Scholar 

  19. Mohamad N, Zainol NS, Rahim FF, Maulod HEA, Rahim TA, Shamsuri SR, Azam MA, Yaakub MY, Abdollah MFB, Manaf MEA (2013) Mechanical and morphological properties of polypropylene/epoxidized natural rubber blends at various mixing ratio. Procedia Eng 68:439–445

    CAS  Google Scholar 

  20. Barbeş L, Rădulescu C, Stihi C (2014) ATR-FTIR spectrometry characterisation of polymeric materials. Rom Reports Phys 66:765–777

    Google Scholar 

  21. Ma TS, Gutterson M (1972) Organic elemental analysis. Anal Chem 44:445–457

    CAS  PubMed  Google Scholar 

  22. Tavares LB, Rocha RG, Rosa DS (2017) An organic bioactive pro-oxidant behavior in thermal degradation kinetics of polypropylene films. Iran Polym J 26:273–280

    CAS  Google Scholar 

  23. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, West Sussex

    Google Scholar 

  24. Silverstein RM, Bassler GC (1963) Spectrometric identification of organic compounds. J Med Chem 6:826–827

    Google Scholar 

  25. Montagna LS, Forte MMC, Santana RMC (2013) Induced degradation of polypropylene with an organic pro-degradant additive. J Mater Sci Eng A 3:123–131

    Google Scholar 

  26. Peixoto J, Silva LP, Krüger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324:634–644

    CAS  PubMed  Google Scholar 

  27. Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68

    CAS  Google Scholar 

  28. Auta HS, Emenike CU, Jayanthi B, Fauziah SH (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21

    CAS  PubMed  Google Scholar 

  29. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397

    CAS  Google Scholar 

  30. Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    CAS  Google Scholar 

  31. Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5:81–86

    PubMed  Google Scholar 

  32. Fletcher M (1996) Bacterial adhesion: molecular and ecological diversity. Willey, New York

    Google Scholar 

  33. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Am Soc Microbiol 60:151–166

    CAS  Google Scholar 

  34. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91

    CAS  Google Scholar 

  35. Matsunaga M, Whitney PJ (2000) Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polym Degrad Stab 70:325–332

    CAS  Google Scholar 

  36. Husarova L, Machovsky M, Gerych P, Houser J, Koutny M (2010) Aerobic biodegradation of calcium carbonate filled polyethylene film containing pro-oxidant additives. Polym Degrad Stab 95:1794–1799

    CAS  Google Scholar 

  37. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    CAS  PubMed  Google Scholar 

  38. Arkatkar A, Arutchelvi J, Sudhakar M, Bhaduri S, Uppara PV, Doble M (2009) Approaches to enhance the biodegradation of polyolefins. Open Environ Eng J 2:68–80

    CAS  Google Scholar 

  39. Chawla S, Ghosh AK, Ahmad S, Avasthi DK (2006) Swift heavy ion induced structural and chemical changes in BOPP film. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 244:248–251

    CAS  Google Scholar 

  40. Cadenato A, Ramis X, Salla JM, Morancho JM, Contat-Rodrigo L, Vallés-Lluch A, Ribes-Greus A (2006) Calorimetric studies of PP/Mater-Bi blends aged in soil. J Appl Polym Sci 100:3446–3453

    CAS  Google Scholar 

  41. Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29

    CAS  Google Scholar 

  42. Longo C, Savaris M, Zeni M, Brandalise RN, Grisa AMC (2011) Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater Res 14:442–448

    CAS  Google Scholar 

  43. Rivaton A, Gardette JL, Mailhot B, Morlat-Therlas S (2005) Basic aspects of polymer pegradation. Macromol Symp 225:129–146

    CAS  Google Scholar 

  44. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2012) Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng 109:513–519

    CAS  Google Scholar 

  45. Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455

    CAS  Google Scholar 

  46. Valle MLM, Guimarães MJOC (2004) Degradação de poliolefinas utilizando catalisadores zeolíticos. Polímeros Ciência e Tecnol 14:17–21

    CAS  Google Scholar 

Download references

Acknowledgements

The present work was performed with the support of Coordination of Improvement of Higher Level Personnel—Brazil (CAPES)—Finance Code 001, and Brasilata Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeane Estela Ayres de Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, J.P., Miranda, G.M., de Souza, G.L. et al. Investigation of degradation of polypropylene in soil using an enzymatic additive. Iran Polym J 28, 1045–1055 (2019). https://doi.org/10.1007/s13726-019-00766-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00766-8

Keywords

Navigation