Skip to main content
Log in

Poly(itaconic acid)-assisted ultrafiltration of heavy metal ions’ removal from wastewater

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The complexation–ultrafiltration technique has been introduced as a capable system to remove heavy metals ions from wastewater. This method needs a water-soluble polymer; therefore, in this paper we synthesized super water-soluble poly(itaconic acid) (PITA) and employed it in polymer-assisted ultrafiltration process to remove Pb(II) ions from synthetic wastewater solutions. The itaconic acid can be produced from different agricultural products and is a green and eco-friendly material. Factors influencing the removal of the metals ions including poly(itaconic acid) concentration, pH and permeate flux were investigated. The results showed that the maximum percentage of metal ion removal was obtained in the basic pH (pH > 7). The flux test was performed by 200 mg/L of poly(itaconic acid) and after 60 min, the flux of membrane was 33.4 L/m2h. The simultaneously selective removal ability of the poly(itaconic acid) for adsorption of different metal ions (Pb2+, Sn2+, Cu2+, Zn2+, and Cd2+) was also studied. The trend of rejection was Pb2+ > Cu2+ > Sn2+ > Zn2+ > Cd2+. The highest rejection of Pb(II) ions was achieved as 86%. Generally, the results of this research demonstrated that poly(itaconic acid) (with two carboxyl groups on its repeating unit) is more effective in removing heavy metals ions from wastewater in comparison with customary polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vatanpour V, Salehi E, Sahebjamee N, Ashrafi M (2018) Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: preparation, characterization, and adsorption performance. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.01.010(In press)

    Article  Google Scholar 

  2. Ya V, Martin N, Chou Y-H, Chen Y-M, Choo K-H, Chen S-S, Li C-W (2018) Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode. J Taiwan Inst Chem Eng 83:107–114

    Article  CAS  Google Scholar 

  3. Rezania H, Vatanpour V, Salehi E, Gavari N, Shockravi A, Ehsani M (2019) Wholly heterocycles-based polyamide–sulfide containing pyridine and thiazole rings: a super-adsorbent polymer for lead removal. J Polym Environ 27:1790–1800

    Article  CAS  Google Scholar 

  4. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environm Chem Let 17:729–754

    Article  CAS  Google Scholar 

  5. Barakat MA, Schmidt E (2010) Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256:90–93

    Article  CAS  Google Scholar 

  6. Zeng J, Ye H, Hu Z (2009) Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions. J Hazard Mater 161:1491–1498

    Article  CAS  Google Scholar 

  7. Ye C-C, An Q-F, Wu J-K, Zhao F-Y, Zheng P-Y, Wang N-X (2019) Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal. Chem Eng J 359:994–1005

    Article  CAS  Google Scholar 

  8. Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions. J Hazard Mater 169:599–609

    Article  CAS  Google Scholar 

  9. Dambies L, Jaworska A, Zakrzewska-Trznadel G, Sartowska B (2010) Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration. J Hazard Mater 178:988–993

    Article  CAS  Google Scholar 

  10. Crini G, Morin-Crini N, Fatin-Rouge N, Déon S, Fievet P (2017) Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arab J Chem 10:S3826–S3839

    Article  CAS  Google Scholar 

  11. Molinari R, Argurio P, Poerio T (2004) Comparison of polyethylenimine, polyacrylic acid and poly(dimethylamine-co-epichlorohydrin-co-ethylenediamme) in Cu2+ removal from wastewaters by polymer-assisted ultrafiltration. Desalination 162:217–228

    Article  CAS  Google Scholar 

  12. Salehi E, Daraei P, Arabi Shamsabadi A (2016) A review on chitosan-based adsorptive membranes. Carbohyd Polym 152:419–432

    Article  CAS  Google Scholar 

  13. Trivunac K, Stevanovic S (2006) Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 64:486–491

    Article  CAS  Google Scholar 

  14. Molinari R, Gallo S, Argurio P (2004) Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration–complexation. Water Res 38:593–600

    Article  CAS  Google Scholar 

  15. Jellouli Ennigrou D, Ben Sik Ali M, Dhahbi M (2014) Copper and zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination 343:82–87

    Article  CAS  Google Scholar 

  16. Spivakov BY, Geckeler K, Bayer E (1985) Liquid-phase polymer-based retention—the separation of metals by ultrafiltration on polychelatogens. Nature 315:313–315

    Article  CAS  Google Scholar 

  17. Rivas BL, Pereira E, Cid R, Geckeler KE (2005) Polyelectrolyte-assisted removal of metal ions with ultrafiltration. J Appl Polym Sci 95:1091–1099

    Article  CAS  Google Scholar 

  18. Rivas BL, Maureira A, Guzmán C, Contreras D, Kaim W, Geckeler KE (2011) Poly(l-lysine) as a polychelatogen to remove toxic metals using ultrafiltration and bactericide properties of poly(l-lysine)–Cu2+ complexes. Polym Bullet 67:763–774

    Article  CAS  Google Scholar 

  19. Camarillo R, Llanos J, García-Fernández L, Pérez Á, Cañizares P (2010) Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Sep Purif Technol 70:320–328

    Article  CAS  Google Scholar 

  20. Rivas BL, Maureira A (2008) Water-soluble polyelectrolytes contaning sulfonic acid groups with metal ion binding ability by using the liquid phase polymer based retention technique. Macromol Symp 270:143–152

    Article  CAS  Google Scholar 

  21. Veličković S, Džunuzović ES, Griffiths PC, Lacik I, Filipović J, Popović IG (2008) Polymerization of itaconic acid initiated by a potassium persulfate/N, N-dimethylethanolamine system. J Appl Polym Sci 110:3275–3282

    Article  Google Scholar 

  22. Rezania J, Shockravi A, Vatanpour V, Ehsani M (2019) Preparation and performance evaluation of carboxylic acid containing polyamide incorporated microporous ultrafiltration PES membranes. Polym Adv Technol 30:407–416

    Article  CAS  Google Scholar 

  23. Yokota K, Hirabayashi T, Takashima T (1975) The preparation of poly (itaconic acid). Macromol Chem 176:1197–1205

    Article  CAS  Google Scholar 

  24. Kryvoruchko AP, Yurlova LY, Atamanenko ID, Kornilovich BY (2004) Ultrafiltration removal of U(VI) from contaminated water. Desalination 162:229–236

    Article  CAS  Google Scholar 

  25. Tsuchida E, Nishide H (1977) Polymer-metal complexes and their catalytic activity Molecular properties. Advances in polymer science, vol 24. Springer, Berlin

    Google Scholar 

  26. Alpatova A, Verbych S, Bryk M, Nigmatullin R, Hilal N (2004) Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation–ultrafiltration process. Sep Purif Technol 40:155–162

    Article  CAS  Google Scholar 

  27. Arthanareeswaran G, Thanikaivelan P, Jaya N, Mohan D, Raajenthiren M (2007) Removal of chromium from aqueous solution using cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes. J Hazard Mater 139:44–49

    Article  CAS  Google Scholar 

  28. Aroua MK, Zuki FM, Sulaiman NM (2007) Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J Hazard Mater 147:752–758

    Article  CAS  Google Scholar 

  29. Llorens J, Pujolà M, Sabaté J (2004) Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: a two-phase model for complexation binding. J Membr Sci 239:173–181

    Article  CAS  Google Scholar 

  30. Bodzek M, Korus I, Loska K (1999) Application of the hybrid complexation-ultrafiltration process for removal of metal ions from galvanic wastewater. Desalination 121:117–121

    Article  CAS  Google Scholar 

  31. Vieira M, Tavares CR, Bergamasco R, Petrus JCC (2001) Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater. J Membr Sci 194:273–276

    Article  CAS  Google Scholar 

  32. Petrov S, Nenov V (2004) Removal and recovery of copper from wastewater by a complexation-ultrafiltration process. Desalination 162:201–209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the financial support of Kharazmi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Vatanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Vatanpour, V. & Faghani, S. Poly(itaconic acid)-assisted ultrafiltration of heavy metal ions’ removal from wastewater. Iran Polym J 28, 1069–1077 (2019). https://doi.org/10.1007/s13726-019-00767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00767-7

Keywords

Navigation