Skip to main content

Advertisement

Log in

Effect of ionomer/multiplet formation on mechanical properties and ascorbic acid release behavior of PNIPAAm hydrogels copolymerized by DMAEMA, DMAPMAAm and MAPTAC

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels containing N-[3-(N,N-dimethylamino)propyl]methacrylamide (DMAPMAAm), 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) and [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) as cationic monomers were cross-linked with N,N’-methylenebisacrylamide (BIS) and tetraallylammonium bromide (TAB). The swelling degrees, uniaxial compression moduli and L-ascorbic acid (L-AA) releases of these cationic PNIPAAm hydrogels synthesized in 1,4-dioxane were compared with the one prepared in distilled–deionized water (DDW) and in aqueous sodium hydroxide solution (0.1 N NaOH). P(NIPAAm-co-MAPTAC)/BIS and P(NIPAAm-co-DMAEMA)/BIS hydrogels at 37 °C in DDW and at 37 °C/pH 4 exhibited higher gel strengths and compressive moduli than all the others cross-linked and copolymerized with TAB and DMAPMAAm, respectively. All the observations indicated that the physical cross-linking points created by ionomer pairs of MAPTA+Cl units and the hydrophobic contributions of ester groups in the DMAEMA units might be a reason of their improved mechanical properties in DDW at 37 °C. Further, the charge screening effect of chloride ions in the swelling medium at pH 4 also resulted in the improved compressive moduli compared to the ones in DDW. The water diffusion into/from all the copolymeric PNIPAAm hydrogels during the swelling/deswelling processes at 25 °C/37 °C in DDW and their L-AA releases at 37 °C in DDW also revealed the importance of these ionic and hydrophobic effects. Water transport through the ones cross-linked with TAB was controlled by non-Fickian process due to the repulsive forces between the quaternized ammonium groups on the chemical cross-links while in the case of P(NIPAAm-co-MAPTAC)/BIS, water transport followed Fickian diffusion because the multiplet formations behaved as additional cross-links. Furthermore, P(NIPAAm-co-MAPTAC)/BIS hydrogel due to the ionomer-multiplet transitions at 37 °C in DDW has exhibited less-Fick diffusion that resulted in a lower diffusion coefficient during the release of L-AA as compared to the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  2. Bae YH, Okano T, Kim SW (1990) Temperature dependence of swelling of crosslinked poly(N, N’-alkyl substituted acrylamides) in water. J Polym Sci Polym Phys 28:923–936

    Article  CAS  Google Scholar 

  3. Inomata H, Wada N, Yagi Y, Goto S, Saito S (1995) Swelling behaviours of N-alkylacrylamide gels in water: effects of copolymerization and crosslinking density. Polymer 36:875–877

    Article  CAS  Google Scholar 

  4. Yu H, Grainger DW (1993) Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: cationic, anionic, and ampholytic hydrogels. J Appl Polym Sci 49:1553–1563

    Article  CAS  Google Scholar 

  5. Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE (2002) Hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28:957–974

    Article  PubMed  CAS  Google Scholar 

  6. Ahiabu A, Serpe MJ (2017) Rapidly responding pH- and temperature-responsive poly(N-isopropylacrylamide)-based microgels and assemblies. ACS Omega 2:1769–1777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Park TG (1999) Temperature modulated protein release from pH/temperature-sensitive hydrogels. Biomaterials 20:517–521

    Article  PubMed  CAS  Google Scholar 

  8. Wang B, Xu XD, Wang ZC, Cheng SX, Zhang XZ, Zhuo RX (2008) Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels. Colloid Surf B 64:34–41

    Article  CAS  Google Scholar 

  9. Mishra RK, Ray AR (2011) Synthesis and characterization of poly{N-[3-(dimethylamino)propyl] methacrylamide-co-itaconic acid} hydrogels for drug delivery. J Appl Polym Sci 119:3199–3206

    Article  CAS  Google Scholar 

  10. Chen J, Liu M, Chen W, Zhang N, Zhu S, Zhang S, Xiong Y (2011) Synthesis, swelling and drug-release behaviour of a poly(N, N-diethylacrylamide-co-(2-dimethylamino)ethyl methacrylate) hydrogel. J Biomater Sci, Polym Ed 22:1049–1068

    Article  CAS  Google Scholar 

  11. Wei W, Qi X, Li J, Zhong Y, Zuo G, Pan X, Dong W (2017) Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC. Int J Biol Macromol 101:474–480

    Article  PubMed  CAS  Google Scholar 

  12. Echeverría C, Aragón-Gutiérrez A, Fernández-García M, Muñoz-Bonilla A, López D (2019) Thermoresponsive poly(N-isopropylacrylamide-co-dimethylaminoethyl methacrylate) microgel aqueous dispersions with potential antimicrobial properties. Polymers 11:606

    Article  PubMed Central  CAS  Google Scholar 

  13. Ramos J, Forcada J, Hidalgo-Alvarez R (2013) Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chem Rev 114:367–428

    Article  PubMed  CAS  Google Scholar 

  14. Sigolaeva L, Pergushov D, Oelmann M, Schwarz S, Brugnoni M, Kurochkin I, Richtering W (2018) Surface functionalization by stimuli-sensitive microgels for effective enzyme uptake and rational design of biosensor setups. Polymers 10:791

    Article  PubMed Central  CAS  Google Scholar 

  15. Han D, Lu Z, Chester SA, Lee H (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep 8:1963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Beltran S, Hooper HH, Blanch HW, Prausnitz JM (1990) Swelling equilibria for ionized temperature sensitive gels in water and in aqueous salt solutions. J Chem Phys 92:2061–2066

    Article  CAS  Google Scholar 

  17. Mishra RK, Ramasamy K, Ban NN, Majeed ABA (2013) Synthesis of poly[3-(methacryloylamino)propyl trimethylammonium chloride-co-methacrylic acid] copolymer hydrogels for controlled indomethacin delivery. J Appl Polym Sci 128:3365–3374

    Article  CAS  Google Scholar 

  18. Halperin A, Kröger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367

    Article  CAS  Google Scholar 

  19. Deen GR, Mah CH (2016) Influence of external stimuli on the network properties of cationic poly(N-acryloyl-N’-propyl piperazine) hydrogels. Polymer 89:55–68

    Article  CAS  Google Scholar 

  20. Cooperstein MA, Canavan HE (2013) Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases 8:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Uz M, Altinkaya SA, Mallapragada SK (2017) Stimuli responsive polymer-based strategies for polynucleotide delivery. J Mater Res 32:2930–2953

    Article  CAS  Google Scholar 

  22. Bellotti E, Fedorchak MV, Velankar S, Little SR (2019) Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. J Mater Chem B 7:1276–1283

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Kozbekçi C, Şenkal BF, Erbil C (2017) Compressive moduli and network parameters of N-isopropylacrylamide hydrogels copolymerized by monoesters of itaconic acid and crosslinked with tetraallylammonium bromide. J Appl Polym Sci 134:45039

    Article  CAS  Google Scholar 

  24. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 5:25–35

    Article  Google Scholar 

  25. Ritger PL, Peppas NA (1987) A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Rel 5:23–36

    Article  CAS  Google Scholar 

  26. Alfrey T Jr, Gurnee EF, Lloyd WG (1966) Diffusion in glassy polymers. J Polym Sci Pol Phys 12:249–261

    Google Scholar 

  27. Brazel CS, Peppas NA (1999) Mechanisms of solute and drug transport in relaxing swellable, hydrophilic glassy polymers. Polymer 40:3383–3398

    Article  CAS  Google Scholar 

  28. van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NM, van Steenbergen MJ, Hennink WE (1999) Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconj Chem 10:589–597

    Article  Google Scholar 

  29. Weaver LG, Stockmann R, Thang SH, Postma A (2017) Temperature-responsive methacrylamide polyampholytes. RSC Adv 7:31033–31041

    Article  CAS  Google Scholar 

  30. Van de Wetering P, Zuidam NJ, Van Steenbergen MJ, Van der Houwen OAGJ, Underberg WJM, Hennink WE (1998) A mechanistic study of the hydrolytic stability of poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 31:8063–8068

    Article  Google Scholar 

  31. Yalçın B, Erbil C (2018) Effect of sodium hydroxide solution as polymerization solvent and activator on structural, mechanical and antibacterial properties of PNIPAAm and P(NIPAAm–clay) hydrogels. Polym Compos 39:386–406

    Article  CAS  Google Scholar 

  32. Zhang S, Shi Z, Xu H, Ma X, Yin J, Tian M (2016) Revisiting the mechanism of redox-polymerization to build the hydrogel with excellent properties using a novel initiator. Soft Matter 12:2575–2582

    Article  PubMed  CAS  Google Scholar 

  33. Si K, Guo XQ, Qiu KY (1995) Initiation mechanism of radical polymerization using ammonium persulfate and polymerizable amine redox initiators. J Macromol Sci A 32:1149–1159

    Article  Google Scholar 

  34. Guo XQ, Qiu KY, Feng DX (1990) Studies on the kinetics and initiation mechanism of acrylamide polymerization using persulfate/aliphatic diamine systems as initiator. Makromol Chem 191:577–587

    Article  CAS  Google Scholar 

  35. Feng XD, Guo XQ, Qiu KY (1988) Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N, N, N’, N’-tetramethylethylenediamine. Makromol Chem 189:77–83

    Article  CAS  Google Scholar 

  36. An SW, Thirtle PN, Thomas RK, Baines FL, Billingham NC, Armes SP, Penfold J (1999) Structure of a diblock copolymer adsorbed at the hydrophobic solid/aqueous interface: effects of charge density on a weak polyelectrolyte brush. Macromolecules 32:2731–2738

    Article  CAS  Google Scholar 

  37. Haq MA, Su Y, Wang D (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C-Mater 70:842–855

    Article  CAS  Google Scholar 

  38. Saeidi A, Katbab AA, Vasheghani-Farahani E, Afshar F (2004) Formulation design, optimization, characterization and swelling behaviour of a cationic superabsorbent based on a copolymer of [3-(methacryloylamino)propyl]trimethylammoniumchloride and acrylamide. Polym Int 53:92–100

    Article  CAS  Google Scholar 

  39. Khokhlov AR, Kramarenko EY (1994) Polyelectrolyte/ionomer behavior in polymer gel collapse. Macromol Theory Simul 3:45–59

    Article  CAS  Google Scholar 

  40. Miquelard-Garnier G, Creton C, Hourdet D (2008) Strain induced clustering in polyelectrolyte hydrogels. Soft Matter 4:1011–1023

    Article  CAS  PubMed  Google Scholar 

  41. Starodubtsev SG, Vasilevskaya VV, Khokhlov AR (2008) In: Galaev I, Mattiasson B (eds) Smart polymers: applications in biotechnology and biomedicine, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton, p 92

    Google Scholar 

  42. Korpe S, Erdoğan B, Bayram G, Ozgen S, Uludag Y, Bicak N (2009) Crosslinked DADMAC polymers as cationic super absorbents. React Funct Polym 69:660–665

    Article  CAS  Google Scholar 

  43. Baker JP, Hong LH, Blanch HW, Prausnitz JM (1994) Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide-based hydrogels. Macromolecules 27:1446–1454

    Article  CAS  Google Scholar 

  44. Trigo RM, Blanco MD, Huerta P, Olmo R, Teijón JM (1993) L-Ascorbic acid release from PHEMA hydrogels. Polym Bull 31:577–584

    Article  CAS  Google Scholar 

  45. Martinez-Ruvalcaba A, Sanchez-Diaz JC, Becerra F, Cruz-Barba LE, Gonzalez-Alvarez A (2009) Swelling, characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candan Erbil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşek, C., Eroğlu, Z.E. & Erbil, C. Effect of ionomer/multiplet formation on mechanical properties and ascorbic acid release behavior of PNIPAAm hydrogels copolymerized by DMAEMA, DMAPMAAm and MAPTAC. Iran Polym J 28, 977–990 (2019). https://doi.org/10.1007/s13726-019-00762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00762-y

Keywords

Navigation