Skip to main content
Log in

3D FEM-DEM coupling analysis for granular-media-based thin-wall elbow tube push-bending process

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The granular-media-based thin-wall elbow push-bending process involves filling a tube with granular media and pushing the tube into a die to bend a tubular blank into an elbow shape. By means of the mechanical characteristics of granular filler, an elbow tube with t/D < 0.01 (the ratio of wall thickness to outer diameter) and R/D < 1.5 (the ratio of bending radius to outer diameter) can be formed. To investigate the interaction between thin-wall elbow and granular filler, A 3D FEM-DEM coupling numerical model is developed, which takes into account both the deformation behavior of tubular blank (continuum, finite element method FEM) and mechanical characteristics of granular filler (discrete media, discrete element method DEM). By means of the coupling model, the key forming parameters of an elbow tube such as forming force, wall thickness distribution, wrinkling are simulated and compared to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang H, Li H, Zhang ZY et al (2012) Advances and trends on tube bending forming technologies. Chinese. J Aeronaut 25:1–12

    Article  Google Scholar 

  2. Hashmi MSJ (2006) Aspects of tube and pipe manufacturing processes: meter to nanometer diameter. J. Mater. Proc. Technol. 179:5–10

    Article  Google Scholar 

  3. Yang H, Li H, Zhang ZY et al (2012) Advances and trends on tube bending forming technologies. J Plast Eng 8:83–85

    Google Scholar 

  4. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118

    Article  Google Scholar 

  5. Zhang SH, Shen YF, Qiu HJ (2013) The technology and welding joint properties of hybrid laser-tig welding on thick plate. Opt Laser Technol 48:381–388

    Article  Google Scholar 

  6. Liu H, Zhang SH, Cheng M et al (2013) DEM simulation of bead packs as fillers in thin-wall tube push bending process. AIP Proceedings 1532:708–713

    Google Scholar 

  7. Teng BG, Hu L, Liu G, Yuan SJ (2012) Wrinkling behavior of hydro bending of carbon steel Al alloy bilayered tubes. Trans Nonferrous Met Soc China 22:560–565

    Article  Google Scholar 

  8. Oh IY, Han SW, Woo YY et al (2018) Tubular blank design to fabricate an elbow tube by a push-bending process. J Mater Proc Technol 260:112–122

    Article  Google Scholar 

  9. Armstrong, D.E., Dunn, T.J.J., Stulen, W.H., Roeser, G.P., 1961. Cold tube bending and sizing, US2971556A (US Patent)

    Google Scholar 

  10. Zeng Y, Li Z (2002) Experimental research on the tube push-bending process. J. Mater. Proc. Technol. 122:237–240

    Article  Google Scholar 

  11. Baudin S, Ray P, Mac Donald BJ, Hashmi MSJ (2004) Development of a novel method of tube bending using finite element simulation. J Mater Process Technol 153:128–133

    Article  Google Scholar 

  12. Kahnamouei JT, Behjat B (2010) Modeling and experimental validation of the effect of sand filling on avoiding wrinkling phenomenon in thin-walled tube bending process. In ASME 2010 10th biennial conference on engineering systems design and analysis. Am Soc Mech Eng:799–803

  13. Du B, Zhao CC, Dong GJ et al (2017) FEM-DEM coupling analysis for solid granule medium forming new technology. J Mater Process Technol 249:108–117

    Article  Google Scholar 

  14. Chen H, Güner A, Khalifa NB, Tekkaya AE (2016) Granular media-based tube press hardening. J Mater Process Technol 228:145–159

    Article  Google Scholar 

  15. Chen H, Hess S, Haeberle J, Pitikaris S, Born P, Güner A, Sperl M, Tekkaya AE (2016) Enhanced granular medium-based tube and hollow profile press hardening. CIRP Ann-Manuf Technol 65(1):273–276

    Article  Google Scholar 

  16. Dong GJ, Zhao CC, Peng YX, Li Y (2015) Hot granules medium pressure forming process of AA7075 conical parts. Chin J Mech Eng 28:580–591

    Article  Google Scholar 

  17. Dong GJ, Bi J, Du B, Zhao CC (2017) Research on AA6061 tubular components prepared by combined technology of heat treatment and internal high pressure forming. J Mater Process Technol 242:126–138

    Article  Google Scholar 

  18. Brauer K, Pfitzner M, Krimer DO, Mayer M, Jiang YM, Liu M (2006) Granular elasticity: stress distributions in silos and under point loads. Phys Rev E 74:061311

    Article  Google Scholar 

  19. Kiwing T, Lai PY, Pak HK (2001) Jamming of granular flow in a two-dimensional hopper. Phys Rev Lett 86:71–74

    Article  Google Scholar 

  20. Hirshfeld D, Rapaport DC (2001) Granular flow from a silo: discrete-particle simulations in three dimensions. The European Physical Journal E 4:193–199

    Article  Google Scholar 

  21. Liu H, Zhang SH, Cheng M et al (2015) A minimum principle for contact forces in random packings of elastic frictionless particles. Granul Matter 17:475–482

    Article  Google Scholar 

  22. Cundal PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  23. Nakashima H, Oida A (2004) Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method. J Terrramech 41:127–137

    Article  Google Scholar 

  24. Michael M, Vogel F, Peters B (2015) DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput Methods Appl Mech Eng 289:227–248

    Article  MathSciNet  Google Scholar 

  25. Taforel P, Renouf M, Dubois F, Voivret JC (2015) Finite element-discrete element coupling strategies for the modelling of ballast-soil interaction. International Journal of Railway Technology 4:73–95

    Article  Google Scholar 

  26. Oñate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128

    Article  Google Scholar 

  27. Oñate E, Labra C, Zárate F, Rojek J (2012) Modelling and simulation of the effect of blast loading on structures using an adaptive blending of discrete and finite element methods. Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, pp 365–371

    Google Scholar 

  28. Frangin E, Marin P, Daudeville L (2006) Coupled finite/discrete element method to analyze localized impact on reinforced concrete structure. Computational modelling of concrete structures. In: Mechke G, de Borst R, Mang H, Bićanić N (eds) Computational modelling of concrete structures: proceedings of the euro-C 2006 conference. Mayrhofen, Austria, pp 27–30

    Google Scholar 

  29. Haddad H, Guessasma M, Fortin J (2016) A DEM–FEM coupling based approach simulating thermomechanical behaviour of frictional bodies with interface layer. Int J Solids Struct 81:203–218

    Article  Google Scholar 

  30. Zheng Z, Zang M, Chen S, Zhao C (2017) An improved 3D DEM-FEM contact detection algorithm for the interaction simulations between particles and structures. Powder Technol 305:308–322

    Article  Google Scholar 

Download references

Acknowledgements

The present work is funded by the National Natural Science Foundation of China (contract no. 51875547), project of Suzhou Key Laboratory Foundation (SZS201815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, SH., Song, HW. et al. 3D FEM-DEM coupling analysis for granular-media-based thin-wall elbow tube push-bending process. Int J Mater Form 12, 985–994 (2019). https://doi.org/10.1007/s12289-019-01473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-019-01473-8

Keywords

Navigation