Skip to main content
Log in

Numerical analysis of the dependence of rubber hysteresis loss and heat generation on temperature and frequency

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The hysteresis loss and the heat generation of rubber compounds under different ambient temperatures and frequencies were predicted in terms of the viscoelastic theory. The cross-linking densities and the dynamic compressive properties were measured in order to partially reveal the microstructures and the viscoelastic response of rubber specimens. Based on the experimental data of storage and loss moduli, a piecewise fitting method was established to determine the viscoelastic constitutive model parameters. Then the dynamic compressive process of natural rubber specimen was analyzed by the finite element method. The obtained hysteresis loss and the energy dissipation were used to predict the transient and steady-state temperature field. The results reveal that the dependence of rubber hysteresis loss on the frequency at a lower ambient temperature plays a more important role in predicting the heat generation of rubber compounds; the dependence becomes weaker as the ambient temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Banić, M.S., Stamenković, D.S., Miltenović, V., Milošević, M.S., Miltenović, A.V., Ðekić, P.S., Rackov, M.J.: Prediction of heat generation in rubber or rubber-metal springs. Therm. Sci. 16(2), 527–539 (2012)

    Article  Google Scholar 

  • Bower, D.I.: An Introduction to Polymer Physics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Ebbott, T., Hohman, R., Jeusette, J.-P., Kerchman, V.: Tire temperature and rolling resistance prediction with finite element analysis. Tire Sci. Technol. 27(1), 2–21 (1999)

    Article  Google Scholar 

  • Gussoni, M., Greco, F., Mapelli, M., Vezzoli, A., Ranucci, E., Ferruti, P., Zetta, L.: Elastomeric polymers. 2. NMR and NMR imaging characterization of cross-linked PDMS. Macromolecules 35(5), 1722–1729 (2002)

    Article  Google Scholar 

  • Johnson, A.R., Chen, T.K.: Approximating thermo-viscoelastic heating of largely strained solid rubber components. Comput. Methods Appl. Math. 194(2–5), 313–325 (2005)

    MATH  Google Scholar 

  • Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M.: Modeling hysteretic friction of viscoelastic components and parameters identification techniques. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, pp. 234–245 (2012a)

    Google Scholar 

  • Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M.: Non-linear generalized Maxwell model for dynamic characterization of viscoelastic components and parametric identification techniques. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 291–300 (2012b)

    Google Scholar 

  • Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M.: Experimental characterization, modeling and parametric identification of the non linear dynamic behavior of viscoelastic components. Eur. J. Mech. A, Solids 42, 176–187 (2013a)

    Article  Google Scholar 

  • Jrad, H., Renaud, F., Dion, J.L., Tawfiq, I., Haddar, M.: Experimental characterization, modeling and parametric identification of the hysteretic friction behavior of viscoelastic joints. Int. J. Appl. Mech. 5(02), 1350018 (2013b)

    Article  Google Scholar 

  • Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M.: Experimental and numerical investigation of energy dissipation in elastomeric rotational joint under harmonic loading. Mech. Time-Depend. Mater. 21, 1–22 (2016)

    Google Scholar 

  • Kar, K.K., Bhowmick, A.K.: Hysteresis loss in filled rubber vulcanizates and its relationship with heat generation. J. Appl. Polym. Sci. 64(8), 1541–1555 (1997)

    Article  Google Scholar 

  • Kerchman, V., Shaw, C.: Experimental study and finite element simulation of heat build-up in rubber compounds with application to fracture. Rubber Chem. Technol. 76(2), 386–405 (2003)

    Article  Google Scholar 

  • Lin, Y.J., Hwang, S.J.: Temperature prediction of rolling tires by computer simulation. Math. Comput. Simul. 67(3), 235–249 (2004)

    Article  MathSciNet  Google Scholar 

  • Luo, H., Klüppel, M., Schneider, H.: Study of filled SBR elastomers using NMR and mechanical measurements. Macromolecules 37(21), 8000–8009 (2004)

    Article  Google Scholar 

  • Luo, R., Wu, W., Mortel, W.: A method to predict the heat generation in a rubber spring used in the railway industry. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 219(4), 239–244 (2005)

    Article  Google Scholar 

  • Luo, W., Hu, X., Wang, C., Li, Q.: Frequency-and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber. Int. J. Mech. Sci. 52(2), 168–174 (2010)

    Article  Google Scholar 

  • Mahdi, E., Tan, J.C.: Dynamic molecular interactions between polyurethane and ZIF-8 in a polymer-MOF nanocomposite: microstructural, thermo-mechanical and viscoelastic effects. Polymer 97, 31–43 (2016)

    Article  Google Scholar 

  • Medalia, A.I.: Heat generation in elastomer compounds: causes and effects. Rubber Chem. Technol. 64(3), 481–492 (1991)

    Article  Google Scholar 

  • Narasimha, R.K., Kumar, R.K., Bohara, P., Mukhopadhyay, R.: A finite element algorithm for the prediction of steady-state temperatures of rolling tires. Tire Sci. Technol. 34(3), 195–214 (2006)

    Article  Google Scholar 

  • Pálfi, L., Váradi, K.: Characterization and implementation of the viscoelastic properties of an EPDM rubber into FEA for energy loss prediction. Period. Polytech., Mech. Eng. 54(1), 35 (2010)

    Article  Google Scholar 

  • Park, S., Kim, Y.: Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 13(1), 26–32 (2001)

    Article  Google Scholar 

  • Park, D.M., Hong, W.H., Kim, S.G., Kim, H.J.: Heat generation of filled rubber vulcanizates and its relationship with vulcanizate network structures. Eur. Polym. J. 36(11), 2429–2436 (2000)

    Article  Google Scholar 

  • Tang, T., Johnson, D., Smith, R.E., Felicelli, S.D.: Numerical evaluation of the temperature field of steady-state rolling tires. Appl. Math. Model. 38(5), 1622–1637 (2014)

    Article  Google Scholar 

  • Tzikang, C.: Determining a Prony series for a viscoelastic material from time varying strain data (2000)

  • Zhi, J., Lu, H., Wang, H., Wang, S., Lin, W., Qiao, C., Jia, Y.: Analysis on dynamic compression performance of tire rubber based on generalized Maxwell model. Acta Polym. Sin. 7, 887–894 (2016)

    Google Scholar 

  • Zhi, J., Wang, S., Wang, H., Lu, H., Lin, W., Qiao, C., Hu, C., Jia, Y.: Analysis on energy loss of rubber under dynamic load. Acta Polym. Sin. 4, 708–715 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Research Foundation of China Civil Aircraft (MJ-2015-H-G-103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, J., Wang, S., Zhang, M. et al. Numerical analysis of the dependence of rubber hysteresis loss and heat generation on temperature and frequency. Mech Time-Depend Mater 23, 427–442 (2019). https://doi.org/10.1007/s11043-018-9398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-018-9398-8

Keywords

Navigation