Skip to main content

Advertisement

Log in

Temperature-dependent viscosity and thermal conductivity effects on peristaltic flow of Carreau–Yasuda nanofluid in a 2D tapered asymmetric channel: applications of solar collectors

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper aims to investigate the influences of variable viscosity and thermal conductivity on peristaltic flow of Carreau–Yasuda nanofluid in a 2D tapered asymmetric channel. Viscosity is considered as a function on the temperature of the fluid. Consequently, all dimension parameters that are functions of viscosity such as, thermophoresis and Brownian motion, and Prandtl, local temperature, and local nanoparticle Grashof numbers has also been performed as variable within the flow. For the pertinent problem, the flow equations are first established, and then reformulated under the assumption of low Reynolds number and long wavelength. Numerical results have been obtained for the pressure gradient as well as the velocity, temperature, and nanoparticle concentration distributions. Moreover, numerical integration has also been performed to assess the expressions for the pressure rise. It is worth mentioning that increases in the variable viscosity parameter cause diminishes in temperature. Hence, the use of nanofluids with high viscosity is favorable in application of solar energy to get higher performance (by acting as a cooling system for solar cells) and lower operating costs. Increases in Brownian motion and thermophoresis parameters cause better transport of heat, and highly absorption in the solar range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Applied magnetic field (\(\mbox{Kg}\,\mbox{s}^{-2}\,\mbox{A}^{-1}\))

\(Cp\) :

Specific heat at constant pressure (\(\mbox{J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}\))

\(g\) :

Acceleration due to gravity (\(\mbox{m}\,\mbox{s}^{-1}\))

\(Dm\) :

Molecular diffusivity (\(\mbox{m}^{-2}\,\mbox{s}^{-1}\))

\(u, v\) :

Dimensional fluid velocities in the \(x\)- and \(y\)-direction, respectively (\(\mbox{m}\,\mbox{s}^{-1}\))

\(k_{1}\) :

Permeability of the porous medium

\(p\) :

Pressure of the fluid

\(c_{p}\) :

Specific heat

\(D_{B}\) :

Brownian motion coefficient

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(W_{e}\) :

The Weissenberg number

\(T\) :

Temperature (K)

\(T_{m}\) :

Mean temperature (K)

\(T_{1}, T_{0}\) :

Temperature at walls (K)

\(C\) :

Concentration

\(C_{1}, C_{0}\) :

Concentration at walls

\(S\) :

Extra stress tensor

\(D_{a}\) :

Darcy number

\(E_{c}\) :

Eckert number

\(\gamma\) :

Volume expansion coefficient

\(\sigma\) :

Electrical conductivity of the fluid (\(\mbox{m}^{-3}\, \mbox{kg}^{-1}\,\mbox{s}^{3}\,\mbox{A}^{2}\))

\(\tau\) :

Ratio of effective heat capacity of the nanoparticle material to heat capacity of the fluid

\(\delta\) :

Dimensionless wave number

\(\mu_{0}\) :

Dynamic viscosity

\(\beta\) :

Viscosity variation parameter

\(\lambda_{1}\) :

Ratio of relaxation to retardation times

\(\lambda_{2}\) :

Retardation time

\(\dot{\gamma}\) :

Shear rate; dots over the quantities indicate differentiation with respect to time

\(\psi\) :

Stream function (\(\mbox{m}^{2}\,\mbox{s}^{-1}\))

\(\theta\) :

Dimensionless temperature

\(\varphi\) :

Dimensionless concentration

\(\rho_{f}\) :

Density of the fluid (\(\mbox{kg}\,\mbox{m}^{-1}\))

\(\phi\) :

Phase difference

References

  • Abbasi, F.M., Hayat, T., Ahmad, B., Chen, G.Q.: Peristaltic motion of a non-Newtonian nanofluid in an asymmetric channel. Z. Naturforsch. A 69, 451–461 (2014)

    Article  Google Scholar 

  • Abbasi, F.M., Hayat, T., Ahmad, B.: Numerical analysis for peristaltic transport of Carreau–Yasuda fluid with variable thermal conductivity and convective conditions. J. Cent. South Univ. Technol. 22, 4467–4475 (2015)

    Article  Google Scholar 

  • Barton, C., Raynor, S.: Peristaltic flow in tubes. Bull. Math. Biophys. 30, 663–680 (1968)

    Article  Google Scholar 

  • Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Am. Soc. Mech. Eng. 66, 99–105 (1995)

    Google Scholar 

  • Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  • Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Ebaid, A.: A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via Adomian decomposition method. Phys. Lett. A 372, 5321–5328 (2008)

    Article  MathSciNet  Google Scholar 

  • Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37, 1451–1467 (2013)

    Article  MathSciNet  Google Scholar 

  • Elogail, M.A., Elshekhipy, A.A.: Approximate analytical solutions to non-linear peristaltic flow with temperature-dependent viscosity parameters: application of multistep differential transform method (MsDTM). Can. J. Phys. 96, 287–299 (2018)

    Article  Google Scholar 

  • Elsheikh, A.H., Sharshir, S.W., Mostafa, M.E., Essa, F.A., Ali, M.K.A.: Applications of nanofluids in solar energy: a review of recent advances. Renew. Sustain. Energy Rev. 82, 3483–3502 (2018)

    Article  Google Scholar 

  • Eytan, O., Jaffa, A.J., Elad, D.: Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med. Eng. Phys. 23, 473–482 (2001)

    Article  Google Scholar 

  • Hayat, T., Qureshi, M.U., Hussain, Q.: Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in porous space. Appl. Math. Model. 33, 1862–1873 (2008)

    Article  Google Scholar 

  • Hayat, T., Abbasi, F.M., Ahmad, B., Alsaedi, A.: Peristaltic transport of Carreau–Yasuda fluid in a curved channel with slip effects. PLoS ONE 9, e95070 (2014a)

    Article  Google Scholar 

  • Hayat, T., Abbasi, F.M., Alsaedi, A., Alsaedi, F.: Hall and Ohmic heating effects on the peristaltic transport of Carreau–Yasuda fluid in an asymmetric channel. Z. Naturforsch. A 69, 43–51 (2014b)

    Article  Google Scholar 

  • Hayat, T., Tanveer, A., Alsaedi, A.: Mixed convective peristaltic flow of Carreau–Yasuda fluid with thermal deposition and chemical reaction. Int. J. Heat Mass Transf. 96, 474–481 (2016)

    Article  Google Scholar 

  • Hayata, T., Ijaz Khan, M., Waqasa, M., Yasmeen, T., Alsaedi, A.: Viscous dissipation effect in flow of magnetonanofluid with variable properties. J. Mol. Liq. 222, 47–54 (2016)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K.: A review on the applications of nanofluids in solar energy field. Renew. Energy 123, 398–406 (2018)

    Article  Google Scholar 

  • Kothandapani, M., Prakash, J.: Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J. Magn. Magn. Mater. 378, 152–163 (2015)

    Article  Google Scholar 

  • Lee, S., Choi, S.U.S.: Application of metallic nanoparticle suspensions in advanced cooling systems. In: International Mechanical Engineering Congress and Exhibition (1996)

    Google Scholar 

  • Mekheimer, Kh.S., Abd elmaboud, Y.: Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can. J. Phys. 92, 1541–1555 (2014)

    Article  Google Scholar 

  • Miao, L., Massoudi, M.: Heat transfer analysis and flow of a slag-type fluid: effects of variable thermal conductivity and viscosity. Int. J. Non-Linear Mech. 76, 8–19 (2015)

    Article  Google Scholar 

  • Nadeem, S., Akbar, N.S.: Influence of temperature dependent viscosity on peristaltic transport of a Newtonian fluid: application of an endoscope. Appl. Math. Comput. 216, 3606–3619 (2010)

    MathSciNet  MATH  Google Scholar 

  • Nadeem, S., Hayat, T., Akbar, N.S., Malik, M.Y.: On discussed the influence of heat transfer in peristalsis with variable viscosity. Int. J. Heat Mass Transf. 52, 4722–4730 (2009)

    Article  Google Scholar 

  • Reddy, N.B., Poornima, T., Sreenivasulu, P.: Influence of variable thermal conductivity on MHD boundary layer slip flow of ethylene glycol based Cu nanofluids over a stretching sheet with convective boundary condition. J. Eng. Math. 90, 51–58 (2014)

    Google Scholar 

  • Shafahi, M., Bianco, V., Vafai, K., Manca, O.: An investigation of the thermal performance of cylindrical heat pipes using nanofluids. Int. J. Heat Mass Transf. 53, 376–383 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Hasona.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasona, W.M. Temperature-dependent viscosity and thermal conductivity effects on peristaltic flow of Carreau–Yasuda nanofluid in a 2D tapered asymmetric channel: applications of solar collectors. Mech Time-Depend Mater 25, 133–150 (2021). https://doi.org/10.1007/s11043-019-09430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09430-3

Keywords

Navigation