Skip to main content
Log in

Energy Storage Properties of Blended Polymer Films with Normal Ferroelectric P(VDF-HFP) and Relaxor Ferroelectric P(VDF-TrFE-CFE)

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

With the recent development of wearable/portable electronic devices, the power sources need to be flexible and miniaturized. As the power supply, a dielectric capacitor is used for systems requiring high power in a short time, which in turn necessitates dielectric materials with high energy density and fast discharging time for device miniaturization. In this study, we attempt to improve the energy density of organic materials by blending normal ferroelectric P(VDF-HFP), which offers high dielectric breakdown strength, and relaxor ferroelectric P(VDF-TrFE-CFE), which provides a high dielectric constant. The role of P(VDF-HFP) as a defect in the P(VDF-TrFE-CFE) crystallite improved the properties of the relaxor-ferroelectrics. Increasing the terpolymer content in the blended films reduced the normal ferroelectric β-phase, which revealed that non-polar phase was induced. The copolymer and terpolymer were blended in various weight ratios (10:0, 7:3, 5:5, 3:7, 1:9 and 0:10) and cast into films. The blends with a copolymer/terpolymer ratio of 1:9 showed reduced hysteresis and remnant polarization, compared to those of the pure terpolymer, and a higher maximum polarization (Pmax) value at an electric field of 250 MV/m, indicating a less saturated polarization at high electric field. To conclude, the PVDF-based copolymer/terpolymer (1:9 ratio) blends showed the highest energy density (6.58 J/cm3).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao, Z., Zhang, Y., Song, N., Li, X.: Towards flexible lithium-sulfur battery from natural cotton textile. Electrochim. Acta 246, 507–516 (2017)

    Article  CAS  Google Scholar 

  2. Jo, S.-R., Kim, D.-S., Cho, Y.-R., Son, S.-J., Kang, H.-W., Nahm, S., Han, S.-H.: Piezoelectric properties of 0.65Pb(Zr1−xTix)O3–0.35Pb(Zn1/6Ni1/6Nb2/3)O3 ceramics and their application to piezoelectric energy harvester. J. Korean Inst. Electr. Electron. Mater. Eng. 31(4), 216–220 (2018)

    Google Scholar 

  3. Li, Q., Chen, L., Gadinski, M.R., Zhang, S.G., Li, H.U., Iagodkine, E., Haque, A., Chen, L.-Q., Jackson, T.N., Wang, Q.: Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)

    Article  CAS  Google Scholar 

  4. Cheng, Z., Lin, M., Wu, S., Thakur, Y., Zhou, Y., Jeong, D.-Y., Shen, Q., Zhang, Q.M.: Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Appl. Phys. Lett. 106, 202902 (2015)

    Article  Google Scholar 

  5. Hu, X., Yi, K., Liu, J., Chu, B.: High energy density dielectrics based on PVDF-based polymers. Energy Technol. 6, 849–864 (2018)

    Article  CAS  Google Scholar 

  6. Chu, B., Zhou, X., Ren, K., Neese, B., Lin, M., Wang, Q., Bauer, F., Zhang, Q.M.: A Dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785), 334–336 (2006)

    Article  CAS  Google Scholar 

  7. Ryu, J., Kim, K.-Y., Choi, J.-J., Hahn, B.-D., Yoon, W.-H., Lee, B.-K., Park, D.-S., Jeong, D.-Y., Park, C.: Flexible dielectric Bi1.5Zn1.0Nb1.5O7 thin films on a Cu-polyimide foil. J. Am. Ceram. Soc. 92(2), 524–527 (2009)

    Article  CAS  Google Scholar 

  8. Feng, Y., Zhang, J., Hu, J., Li, S., Peng, C.: Significantly elevated dielectric and energy storage traits in boron nitride filled polymer nano-composites with topological structure. Electron. Mater. Lett. 14(2), 187–197 (2018)

    Article  CAS  Google Scholar 

  9. Laughlin, B., Ihlefeld, J.F., Daniels, P., Maria, J.-P.: Flexible and lithography-compatible copper foil substrates for ferroelectric thin films. Thin Solid Films 516(10), 3294–3297 (2008)

    Article  CAS  Google Scholar 

  10. Kingon, A.I., Srinivasan, S.: Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat. Mater. 4, 233–237 (2005)

    Article  CAS  Google Scholar 

  11. Li, J.-F., Wang, K., Zhang, B.-P., Zhang, L.-M.: Ferroelectric and piezoelectric properties of fine‐grained Na0.5K0.5NbO3 lead‐free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(2), 706–709 (2006)

    Article  CAS  Google Scholar 

  12. Zhen, Y., Li, J.-F., Wang, K., Yan, Y., Yu, L.: Spark plasma sintering of Li/Ta-modified (K, Na)NbO3 lead-free piezoelectric ceramics: Post-annealing temperature effect on phase structure, electrical properties and grain growth behavior. Mater. Sci. Eng. B 176(14), 1110–1114 (2011)

    Article  CAS  Google Scholar 

  13. Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y., Ryu, J.: High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28(42), 1803665 (2018)

    Article  Google Scholar 

  14. Wang, C., Zhang, J., Gong, S., Ren, K.: Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 124, 154103 (2018)

    Article  Google Scholar 

  15. Zhang, S., Chu, B., Neese, B., Ren, K., Zhou, X., Zhang, Q.M.: Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer. J. Appl. Phys. 99, 044107 (2006)

    Article  Google Scholar 

  16. Guan, F., Pan, J., Wang, J., Wang, Q., Zhu, L.: Effects of polymorphism and crystallite size on dipole reorientation in Poly(vinylidene fluoride) and its random copolymers. Macromolecules 43(16), 6739–6748 (2010)

    Article  CAS  Google Scholar 

  17. Martins, P., Lopes, A.C., Lanceros-Mendez, S.: Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39(4), 683–706 (2014)

    Article  CAS  Google Scholar 

  18. Lee, H.-J., Jo, J.-Y.: Switching behaviors of ferroelectric and relaxor polymer blend films. Electron. Mater. Lett. 15(3), 297–302 (2019)

    Article  CAS  Google Scholar 

  19. Chen, Q., Ren, K., Chu, B., Liu, Y., Zhang, Q.M., Bobnar, V., Levstik, A.: Relaxor ferroelectric polymers–fundamentals and applications. Ferroelectrics 354(1), 178–191 (2007)

    Article  CAS  Google Scholar 

  20. Chen, X., Liu, L., Liu, S.-Z., Cui, Y.-S., Chen, X.-Z., Ge, H.-X., Shen, Q.-D.: P(VDF-TrFE-CFE) terpolymer thin-film for high performance nonvolatile memory. Appl. Phys. Lett. 102, 063103 (2013)

    Article  Google Scholar 

  21. Bauer, F., Fousson, E., Zhang, Q.M.: Recent advances in highly electrostrictive P(VDF-TrFE-CFE) terpolymers. IEEE Trans. Dielectr. Electr. Insul. 13(5), 1149–1154 (2006)

    Article  CAS  Google Scholar 

  22. Akedo, J., Lebedev, M.: Influence of carrier gas conditions on electrical and optical properties of Pb(Zr, Ti)O3 thin films prepared by aerosol deposition method. Jpn. J. Appl. Phys. 40, 5528–5532 (2001)

    Article  CAS  Google Scholar 

  23. Cai, X., Peng, M., Yu, X., Fu, Y., Zou, D.: Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2, 1184–1200 (2014)

    Article  CAS  Google Scholar 

  24. Imanaka, Y., Hayashi, N., Takenouchi, M., Akedo, J.: Aerosol deposition for post-LTCC. J. Eur. Ceram. Soc. 27(8–9), 2789–2795 (2007)

    Article  CAS  Google Scholar 

  25. Ryu, J., Choi, J.-J., Hahn, B.-D., Park, D.-S., Yoon, W.-H., Kim, K.-H.: Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901 (2007)

    Article  Google Scholar 

  26. Peddigari, M., Palneedi, H., Hwang, G.-T., Ryu, J.: Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J. Korean Ceram. Soc. 56(1), 1–23 (2019)

    Article  CAS  Google Scholar 

  27. Lim, J.-H., Kim, J.-W., Lee, S.H., Park, C.-K., Ryu, J., Choi, D.H., Jeong, D.-Y.: Fabrication of high density BZN-PVDF composite film by aerosol deposition for high energy storage properties. Korean J. Mater. Res. 29(3), 175–182 (2019)

    Article  Google Scholar 

  28. Zhang, X., Shen, Y., Shen, Z., Jiang, J., Chen, L., Nan, C.W.: Achieving high energy density in PVDF-based polymer blends: suppression of early polarization saturation and enhancement of breakdown strength. ACS Appl. Mater. Interfaces 8(40), 27236–27242 (2016)

    Article  CAS  Google Scholar 

  29. Liu, F., Li, Z., Wang, Q., Xiong, C.: High breakdown strength and low loss binary polymer blends of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) and poly(methyl methacrylate). Polym. Adv. Technol. 29(4), 1271–1277 (2018)

    Article  CAS  Google Scholar 

  30. Zhang, J., Du, X., Wang, C., Ren, K.: Poly(vinylidene fluoride-hexafluoropropylene) based blend film for ultrahigh energy density capacitor applications. J. Phys. D Appl. Phys. 51, 255306 (2018)

    Article  Google Scholar 

  31. Peng, G., Zhao, X., Zhan, Z., Ci, S., Wang, Q., Liang, Y., Zhao, M.: New crystal structure and discharge efficiency of poly(vinylidene fluoride-hexafluoropropylene)/poly(methyl methacrylate) blend films. RSC Adv. 4, 16849–16854 (2014)

    Article  CAS  Google Scholar 

  32. Ryu, J., Kim, K.-Y., Choi, J.-J., Hahn, B.-D., Yoon, W.-H., Park, D.-S., Park, C.: High dielectric properties of Bi1.5Zn1.0Nb1.5O7 thin films fabricated at room temperature. J. Am. Ceram. Soc. 91(10), 3399–3401 (2008)

    Article  CAS  Google Scholar 

  33. Kamba, S., Porokhonsky, V., Pashkin, A., Bovtun, V., Petzelt, J., Nino, J.C., Trolier-Mckinstry, S., Lanagan, M.T., Randall, C.A.: Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore. Phys. Rev. B. 66, 054106 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program of the Agency for Defense Development (Grant No. ADD-15-201-706-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Yong Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, HB., Kim, JW., Lim, JH. et al. Energy Storage Properties of Blended Polymer Films with Normal Ferroelectric P(VDF-HFP) and Relaxor Ferroelectric P(VDF-TrFE-CFE). Electron. Mater. Lett. 16, 47–54 (2020). https://doi.org/10.1007/s13391-019-00188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00188-x

Keywords

Navigation