Skip to main content
Log in

Ultra-Low Voltage Metal Oxide Thin Film Transistor by Low-Temperature Annealed Solution Processed LiAlO2 Gate Dielectric

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Low surface-roughness and high-capacitance ion-conducting LiAlO2 gate dielectric thin film has been fabricated by sol–gel technique to develop ultra-low voltage (≤ 1.0 V) indium-zinc-oxide thin film transistor (TFT). This LiAlO2 dielectric shows α-LiAlO2 and γ-LiAlO2 phases those have been fabricated at two different temperatures. For both phases, mobile Li-ion is responsible to achieve a high dielectric constant (κ) of the material that helps to reduce the operating voltage of TFT. Additionally, lower surface roughness of LiAlO2 thin film creates a low-density trap state in the semiconductor/dielectric interface which is capable to reduce operating voltage within 1.0-volt. The device with 700 °C annealed γ-LiAlO2 gate dielectric shows the best device performance with an electron mobility of 25 cm2 V−1 s−1 and an on/off ratio of 3 × 105. Instead, 350 °C annealed α-LiAlO2 dielectric require only one volt to saturate the drain current and shows its mobility and on/off ratio are 13.5 cm2 V−1 s−1 and 1 × 104 respectively. Such kind of unusually low operation voltage TFT fabrication becomes possible because of the higher Li+ mobility of α-LiAlO2 gate dielectric and very low surface trap density. A model on carrier transport mechanism has been prepossessed to explain this achievement.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kwon, J.Y., Son, K.S., Jung, J.S., Kim, T.S., Ryu, M.K., Park, K.B., Yoo, B.W., Kim, J.W., Lee, Y.G., Park, K.C., Lee, S.Y., Kim, J.M.: Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron. Device Lett. 29(12), 1309–1311 (2008)

    CAS  Google Scholar 

  2. Jung, J., Kim, S.J., Lee, K.W., Yoon, D.H., Kim, Y.-G., Kwak, H.Y., Dugasani, S.R., Park, S.H., Kim, H.J.: Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosens. Bioelectron. 55, 99–105 (2014)

    CAS  Google Scholar 

  3. Khalid Muhieddine, M.U., Pal, B.N., Burn, P., Namdas, E.B.: All solution-processed, hybrid light emitting field-effect transistors. Adv. Mater. 26, 6410–6415 (2014)

    Google Scholar 

  4. Fortunato, P.B.E., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)

    CAS  Google Scholar 

  5. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004)

    CAS  Google Scholar 

  6. Ou, D.C.-W., Ho, Z.Y., Chuang, Y.-C., Cheng, S.-S., Wu, M.-C., Ho, K.-C., Chu, C.-W.: Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits. Appl. Phys. Lett. 92(12), 122113 (2008)

    Google Scholar 

  7. Garlapati Suresh, K., Divya, M., Breitung, B., Kruk, R., Hahn, H., Dasgupta, S.: Printed electronics based on inorganic semiconductors: from processes and materials to devices. Adv. Mater. 30(40), 1707600 (2018)

    Google Scholar 

  8. Wooseok Yang, K.S., Jung, Y., Jeong, S., Moon, J.: Solution-deposited Zr-doped AlOx gate dielectrics enabling high-performance flexible transparent thin film transistors. J. Mater. Chem. C 1, 4275–4282 (2013)

    Google Scholar 

  9. Ao Liu, G.L., Zhu, H., Song, H., Shin, B., Fortunato, E., Martins, R., Shan, F.: Water-induced scandium oxide dielectric for low-operating voltage n- and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 25, 7180–7188 (2015)

    Google Scholar 

  10. Rinkiö, M., Johansson, A., Paraoanu, G.S., Törmä, P.: High-speed memory from carbon nanotube field-effect transistors with high-κ gate dielectric. Nano Lett. 9(2), 643–647 (2009)

    Google Scholar 

  11. Lee, J., Ha, T.-J., Li, H., Parrish, K.N., Holt, M., Dodabalapur, A., Ruoff, R.S., Akinwande, D.: 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7(9), 7744–7750 (2013)

    CAS  Google Scholar 

  12. McCarthy, M.A., Liu, B., Donoghue, E.P., Kravchenko, I., Kim, D.Y., So, F., Rinzler, A.G.: Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570 (2011)

    CAS  Google Scholar 

  13. Gelinck, G.H., Huitema, H.E.A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J.B.P.H., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.-H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J.E., de Leeuw, D.M.: Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106 (2004)

    CAS  Google Scholar 

  14. Cho, J.H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M.J., Lodge, T.P., Daniel Frisbie, C.: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7(11), 900–906 (2008)

    CAS  Google Scholar 

  15. Panzer, M.J., Frisbie, C.D.: Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J. Am. Ceram. Soc. 129(20), 6599–6607 (2007)

    CAS  Google Scholar 

  16. Cho, J.L.J.H., He, Y., Kim, B.S., Lodge, T.P., Frisbie, C.D.: High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008)

    CAS  Google Scholar 

  17. Kim, M.-G., Kanatzidis, M.G., Facchetti, A., Marks, T.J.: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011)

    CAS  Google Scholar 

  18. DiBenedetto Sara, A., Facchetti, A., Ratner Mark, A., Marks Tobin, J.: Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications. Adv. Mater. 21(14–15), 1407–1433 (2009)

    Google Scholar 

  19. Pal, B.N., Dhar, B.M., See, K.C., Katz, H.E.: Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 8(11), 898–903 (2009)

    CAS  Google Scholar 

  20. Bo Zhang, Y.L., Agarwal, S., Yeh, M.-L., Katz, H.E.: Structure, sodium ion role, and practical issues for β-alumina as a high-k solution-processed gate layer for transparent and low-voltage electronics. ACS Appl. Mater. Interfaces. 3, 4254–4261 (2011)

    Google Scholar 

  21. Jia Sun, B.Z., Katz, H.E.: Materials for printable, transparent, and low-voltage transistors. Adv. Funct. Mater. 21, 29–45 (2011)

    Google Scholar 

  22. Liu, Y., Guan, P., Zhang, B., Falk, M.L., Katz, H.E.: Ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. Chem. Mater. 25(19), 3788–3796 (2013)

    CAS  Google Scholar 

  23. Sharma, A., Chourasia, N.K., Sugathan, A., Kumar, Y., Jit, S., Liu, S.-W., Pandey, A., Biring, S., Pal, B.N.: Solution processed Li5AlO4 dielectric for low voltage transistor fabrication and its application in metal oxide/quantum dot heterojunction phototransistors. J. Mater. Chem. C 6(4), 790–798 (2018)

    CAS  Google Scholar 

  24. Althagafi, T.M., Algarni, S.A., Al Naim, A., Mazher, J., Grell, M.: Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors. Phys. Chem. Chem. Phys. 17(46), 31247–31252 (2015)

    CAS  Google Scholar 

  25. Fujimoto, T., Awaga, K.: Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15(23), 8983–9006 (2013)

    CAS  Google Scholar 

  26. Zhang, L., Li, J., Zhang, X.W., Jiang, X.Y., Zhang, Z.L.: High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett. 95(7), 072112 (2009)

    Google Scholar 

  27. Song, K., Yang, W., Jung, Y., Jeong, S., Moon, J.: A solution-processed yttrium oxide gate insulator for high-performance all-solution-processed fully transparent thin film transistors. J. Mater. Chem. 22(39), 21265–21271 (2012)

    CAS  Google Scholar 

  28. Park, J.H., Yoo, Y.B., Lee, K.H., Jang, W.S., Oh, J.Y., Chae, S.S., Baik, H.K.: Low-temperature, high-performance solution-processed thin-film transistors with peroxo-zirconium oxide dielectric. ACS Appl. Mater. Interfaces. 5(2), 410–417 (2013)

    CAS  Google Scholar 

  29. Miguel, J.J., Valenzuela, A., Bosch, P., Bulbulian, S., Lara, V.H.: Sol–Gel synthesis of lithium aluminate. J. Am. Ceram. Soc. 79, 455–460 (1996)

    Google Scholar 

  30. Gao, J., Shi, S., Xiao, R., Li, H.: Synthesis and ionic transport mechanisms of α-LiAlO2. Solid State Ionics 286, 122–134 (2016)

    CAS  Google Scholar 

  31. Garcia, A., Torres-Trevin̄o, G., West, A.R.: New lithium ion conductors based on the γ-LiAlO2 structure. Solid State Ionics 40–41, 13–17 (1990)

    Google Scholar 

  32. Yoldas, B.E.: Transparent porous alumina. Am. Ceram. Soc. Bull. 54, 286–288 (1975)

    CAS  Google Scholar 

  33. Yoldas, B.E.: Alumina sol preparation from alkoxide. Am. Ceram. Soc. Bull. 54, 289–290 (1975)

    CAS  Google Scholar 

  34. Sulaiman, M., Dzulkarnain, N.A., Rahman, A.A., Mohamed, N.S.: Sol–gel synthesis and characterization of LiNO3–Al2O3 composite solid electrolyte. Solid State Sci. 14(1), 127–132 (2012)

    CAS  Google Scholar 

  35. Valenzuela, M.A., Téllez, L., Bosch, P., Balmori, H.: Solvent effect on the sol–gel synthesis of lithium aluminate. Mater. Lett. 47(4), 252–257 (2001)

    CAS  Google Scholar 

  36. Li, J., Pan, Y., Xiang, C., Ge, Q., Guo, J.: Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol–gel process. Ceram. Int. 32(5), 587–591 (2006)

    CAS  Google Scholar 

  37. Dickens, P.T., Marcial, J., McCloy, J., McDonald, B.S., Lynn, K.G.: Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO2 single crystals. J. Lumin. 190, 242–248 (2017)

    CAS  Google Scholar 

  38. Jang, J., Kang, Y., Cha, D., Bae, J., Lee, S.: Thin-film optical devices based on transparent conducting oxides: physical mechanisms and applications. Crystals 9(4), 92 (2019)

    Google Scholar 

  39. Holston, M.S., McClory, J.W., Giles, N.C., Halliburton, L.E.: Radiation-induced defects in LiAlO2 crystals: holes trapped by lithium vacancies and their role in thermoluminescence. J. Lumin. 160, 43–49 (2015)

    CAS  Google Scholar 

  40. Wang, B., Huang, W., Chi, L., Al-Hashimi, M., Marks, T.J., Facchetti, A.: High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118(11), 5690–5754 (2018)

    CAS  Google Scholar 

  41. Park, J.H., Yoo, Y.B., Lee, K.H., Jang, W.S., Oh, J.Y., Chae, S.S., Lee, H.W., Han, S.W., Baik, H.K.: Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces. 5(16), 8067–8075 (2013)

    CAS  Google Scholar 

  42. Park, J.H., Kim, K., Yoo, Y.B., Park, S.Y., Lim, K.-H., Lee, K.H., Baik, H.K., Kim, Y.S.: Water adsorption effects of nitrate ion coordinated Al2O3 dielectric for high performance metal-oxide thin-film transistor. J. Mater. Chem. C 1(43), 7166–7174 (2013)

    CAS  Google Scholar 

  43. Yu Liu, P.G., Zhang, B., Falk, M.L., Katz, H.E.: Ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. Chem. Mater 25, 3788–3796 (2013)

    Google Scholar 

  44. Sun, J., Liu, H., Jiang, J., Lu, A., Wan, Q.: Low-voltage transparent SnO2 nanowire transistors gated by microporous SiO2 solid-electrolyte with improved polarization response. J. Mater. Chem. 20(37), 8010–8015 (2010)

    CAS  Google Scholar 

  45. Kim, C.-H., Hlaing, H., Yang, S., Bonnassieux, Y., Horowitz, G., Kymissis, I.: Impedance spectroscopy on copper phthalocyanine diodes with surface-induced molecular orientation. Org. Electron. 15(8), 1724–1730 (2014)

    CAS  Google Scholar 

  46. Adamopoulos, G., Thomas, S., Wöbkenberg, P.H., Bradley, D.D.C., McLachlan, M.A., Anthopoulos, T.D.: High-mobility low-voltage ZnO and Li-Doped ZnO transistors based on ZrO2 high-k dielectric grown by spray pyrolysis in ambient air. Adv. Mater. 23(16), 1894–1898 (2011)

    CAS  Google Scholar 

  47. Liu, A., Liu, G.X., Zhu, H.H., Xu, F., Fortunato, E., Martins, R., Shan, F.K.: Fully solution-processed low-voltage aqueous In2O3 thin-film transistors using an ultrathin ZrOx dielectric. ACS Appl. Mater. Interfaces 6(20), 17364–17369 (2014)

    CAS  Google Scholar 

  48. Xu, W., Wang, H., Ye, L., Xu, J.: The role of solution-processed high-[small kappa] gate dielectrics in electrical performance of oxide thin-film transistors. J. Mater. Chem. C 2(27), 5389–5396 (2014)

    CAS  Google Scholar 

  49. Lee, E., Ko, J., Lim, K.-H., Kim, K., Park Si, Y., Myoung Jae, M., Kim Youn, S.: Gate capacitance-dependent field-effect mobility in solution-processed oxide semiconductor thin-film transistors. Adv. Func. Mater. 24(29), 4689–4697 (2014)

    CAS  Google Scholar 

  50. Liu, G., Liu, A., Zhu, H., Shin, B., Fortunato, E., Martins, R., Wang, Y., Shan, F.: Low-temperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors. Adv. Func. Mater. 25(17), 2564–2572 (2015)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by “Science and Engineering Research Board”, India (EMR/2015/000689). Authors are grateful to Central Instrument Facility Centre, IIT(BHU) for providing the SEM and AFM measurement facility. Anand Sharma and Nitesh K Chourasia thanks IIT(BHU) for providing PhD fellowship. Sajal Biring acknowledges the financial support from Ministry of Science and Technology, Taiwan (MOST 105-2218-E-131-003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajal Biring or Bhola N. Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1024 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Chourasia, N.K., Acharya, V. et al. Ultra-Low Voltage Metal Oxide Thin Film Transistor by Low-Temperature Annealed Solution Processed LiAlO2 Gate Dielectric. Electron. Mater. Lett. 16, 22–34 (2020). https://doi.org/10.1007/s13391-019-00184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00184-1

Keywords

Navigation