Skip to main content
Log in

Impact of Size on Humidity Sensing Property of Copper Oxide Nanoparticles

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Three sizes of CuO nanosheets were synthesized by hydrothermal method. The structure and morphology of CuO nanosheets were characterized by X-ray diffraction and scanning electron microscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the three humidity sensors, and the sensing properties were then tested. The experimental results show that the sensitivity greatly increases with the decreasing size of CuO nanosheets, the sensitivity of sensor a, b, c are 369%, 3278%, 22,611% in 97.3% RH, respectively. The smaller sized CuO nanomaterials have better response characteristic, the response time of sensor a, b, c under 11.3–97.3% RH are 53 s, 49 s, 32 s, respectively. And correspondingly, hysteresis properties and the repeatability are also a little influenced. In addition, based on complex impedance spectroscopy and multilayer adsorption theory, the impact of size on humidity sensing property was discussed. The results indicated the feasibility to obtain higher performance of humidity sensor, especially the higher sensitivity, via employment the smaller size sensing nanomaterials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hong, S., Shin, J., Hong, Y., Wu, M., Jeong, Y., Jang, D., Jung, G., Bae, J.H., Lee, J.H.: Humidity-sensitive field effect transistor with In(2)O(3) nanoparticles as a sensing layer. J. Nanosci. Nanotechnol. 19, 6656–6662 (2019)

    Article  Google Scholar 

  2. Gupta, S.P., Pawbake, A.S., Sathe, B.R., Late, D.J., Walke, P.S.: Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B Chem. 293, 83–92 (2019)

    Article  CAS  Google Scholar 

  3. Lin, C., Zhang, H., Zhang, J., Chen, C.: Enhancement of the humidity sensing performance in Mg-doped hexagonal ZnO microspheres at room temperature. Sens. (Basel) 19, 519 (2019)

    Article  Google Scholar 

  4. Li, H., Zhang, J., Tao, B., Wan, L., Gong, W.: Investigation of capacitive humidity sensing behavior of silicon nanowires. Phys. E 41, 600–604 (2009)

    Article  Google Scholar 

  5. Yeo, T.L., Sun, T., Grattan, K.T.V.: Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A 144, 280–295 (2008)

    Article  CAS  Google Scholar 

  6. Shelke, N.T., Karle, S.C., Karche, B.R.: Hydrothermal growth and humidity-dependent electrical properties of molybdenum disulphide nanosheets. J. Nanosci. Nanotechnol. 19, 5158–5166 (2019)

    Article  CAS  Google Scholar 

  7. Zhang, H., Yu, S., Chen, C., Zhang, J., Liu, J., Li, P.: Effects on structure, surface oxygen defects and humidity performance of Au modified ZnO via hydrothermal method. Appl. Surf. Sci. 486, 482–489 (2019)

    Article  CAS  Google Scholar 

  8. Nunes, D., Pimentel, A., Gonçalves, A., Pereira, S., Branquinho, R., Barquinha, P., Fortunato, E., Martins, R.: Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 34, 043001 (2019)

    Article  CAS  Google Scholar 

  9. Zhu, Y., Wang, Y., Duan, G., Zhang, H., Li, Y., Liu, G., Xu, L., Cai, W.: In situ growth of porous ZnO nanosheet-built network film as high-performance gas sensor. Sens. Actuators B Chem. 221, 350–356 (2015)

    Article  CAS  Google Scholar 

  10. Kim, H., Park, S., Park, Y., Choi, D., Yoo, B., Lee, C.S.: Fabrication of a semi-transparent flexible humidity sensor using kinetically sprayed cupric oxide film. Sens. Actuators B Chem. 274, 331–337 (2018)

    Article  CAS  Google Scholar 

  11. Li, D., Hu, J., Wu, R., Lu, J.G.: Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology 21, 485502 (2010)

    Article  Google Scholar 

  12. Ko, Y.H., Nagaraju, G., Lee, S.H., Yu, J.S.: Facile preparation and optoelectronic properties of CuO nanowires for violet light sensing. Mater. Lett. 117, 217–220 (2014)

    Article  CAS  Google Scholar 

  13. Hien, V.X., Minh, V.D., Phuoc, L.H., Vuong, D., Dang, Y.-W., Heo, N.D.Chien: Synthesis of high-density poinsettia-like microstructure of CuO by the hydrothermal method and its ethanol sensing properties. J. Electron. Mater. 46, 3445–3452 (2017)

    Article  CAS  Google Scholar 

  14. Umar, A., Alshahrani, A.A., Algarni, H., Kumar, R.: CuO nanosheets as potential scaffolds for gas sensing applications. Sens. Actuators B Chem. 250, 24–31 (2017)

    Article  CAS  Google Scholar 

  15. Can, N.: Electrospun CuO nanofibers for room temperature volatile organic compound sensing applications. Mater. Chem. Phys. 213, 6–13 (2018)

    Article  CAS  Google Scholar 

  16. Li, D., Zu, X., Ao, D., Tang, Q., Fu, Y., Guo, Y., Bilawal, K., Faheem, M.B., Li, L., Li, S., Tang, Y.: High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol–gel CuO films. Sens. Actuators B Chem. 294, 55–61 (2019)

    Article  CAS  Google Scholar 

  17. Liu, A., Nie, S., Liu, G., Zhu, H., Zhu, C., Shin, B., Fortunato, E., Martins, R., Shan, F.: In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. J. Mater. Chem. C 5, 2524–2530 (2017)

    Article  CAS  Google Scholar 

  18. Ashokan, S., Jayamurugan, P., Ponnuswamy, V.: Effects of CuO and oxidant on the morphology and conducting properties of PANI:CuO hybrid nanocomposites for humidity sensor application. Polym. Sci. Ser. B 61, 86–97 (2019)

    Article  CAS  Google Scholar 

  19. Chani, M.T.S.: Impedimetric sensing of temperature and humidity by using organic-inorganic nanocomposites composed of chitosan and a CuO-Fe3O4 nanopowder. Microchim. Acta 184, 2349–2356 (2017)

    Article  CAS  Google Scholar 

  20. Wang, Z., Xiao, Y., Cui, X., Cheng, P., Wang, B., Gao, Y., Li, X., Yang, T., Zhang, T., Lu, G.: Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6, 3888–3895 (2014)

    Article  CAS  Google Scholar 

  21. Wang, S.-B., Hsiao, C.-H., Chang, S.-J., Lam, K.-T., Wen, K.-H., Young, S.-J., Hung, S.-C., Huang, B.-R.: CuO nanowire-based humidity sensor. IEEE Sens. J. 12, 1884–1888 (2012)

    Article  CAS  Google Scholar 

  22. Krcmar, P., Kuritka, I., Maslik, J., Urbanek, P., Bazant, P., Machovsky, M., Suly, P., Merka, P.: Fully inkjet-printed CuO sensor on flexible polymer substrate for alcohol vapours and humidity sensing at room temperature. Sens. (Basel) 19, 3068 (2019)

    Article  CAS  Google Scholar 

  23. Holzki, M., Fouckhardt, H., Klotzbücher, T.: Evanescent-field fiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis. Sens. Actuators A 184, 93–97 (2012)

    Article  CAS  Google Scholar 

  24. Kiasari, N.M., Servati, P.: Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron Device Lett. 32, 982–984 (2011)

    Article  CAS  Google Scholar 

  25. Chen, L., Zhang, J.: Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)

    Article  CAS  Google Scholar 

  26. Kim, W., Choi, M., Yong, K.: Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B Chem. 209, 989–996 (2015)

    Article  CAS  Google Scholar 

  27. Agarwal, S., Sharma, G.L.: Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B Chem. 85, 205–211 (2002)

    Article  CAS  Google Scholar 

  28. Matsuguchi, M., Umeda, S., Sadaoka, Y., Sakai, Y.: Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B Chem. 49, 179–185 (1998)

    Article  CAS  Google Scholar 

  29. Qi, Q., Zhang, T., Wang, S., Zheng, X.: Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B Chem. 137, 649–655 (2009)

    Article  CAS  Google Scholar 

  30. Sharma, A., Kumar, Y., Mazumder, K., Rana, A.K., Shirage, P.M.: Controlled Zn1–xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism. New J. Chem. 42, 8445–8457 (2018)

    Article  CAS  Google Scholar 

  31. Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    Article  CAS  Google Scholar 

  32. Zhao, L.-X., Song, S.-E., Du, N., Hou, W.-G.: A sorbent concentration-dependent Freundlich isotherm. Colloid Polym. Sci. 291, 541–550 (2012)

    Article  Google Scholar 

  33. Xia, L.X., Shen, Z., Vargas, T., Sun, W.J., Ruan, R.M., Xie, Z.D., Qiu, G.Z.: Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnol. Lett. 35, 2129–2136 (2013)

    Article  CAS  Google Scholar 

  34. Yang, T., Yu, Y.Z., Zhu, L.S., Wu, X., Wang, X.H., Zhang, J.: Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B Chem. 208, 327–333 (2015)

    Article  CAS  Google Scholar 

  35. Tomer, V.K., Thangaraj, N., Gahlot, S., Kailasam, K.: Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016)

    Article  CAS  Google Scholar 

  36. Passe-Coutrin, N., Altenor, S., Gaspard, S.: Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J. Colloid Interface Sci. 332, 515–519 (2009)

    Article  CAS  Google Scholar 

  37. Nounou, M.N., Nounou, H.N.: Multiscale estimation of the Freundlich adsorption isotherm. Int. J. Environ. Sci. Technol. 7, 509–518 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos.61674058, 61604002,), Open Fund of Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University (Grant No. 2019MIP002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijing Liu or Lei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Jiang, H., Ye, Z. et al. Impact of Size on Humidity Sensing Property of Copper Oxide Nanoparticles. Electron. Mater. Lett. 16, 61–71 (2020). https://doi.org/10.1007/s13391-019-00181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00181-4

Keywords

Navigation