Skip to main content
Log in

Anaerobic co-digestion of municipal solid wastes with giant reed under mesophilic conditions

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Anaerobic co-digestion of mixed feedstocks improves the biogas yields due to a better balance of nutrients in the digestion medium. A suitable choice for improving biogas yields from the anaerobic digestion of municipal solid wastes is the co-digestion with lignocellulosic materials. The growing exploitation of the giant reed in several industrial fields motivated a preliminary investigation on the anaerobic co-digestion of steam-exploded giant reed and the organic fraction of municipal solid wastes (OFMSW).The anaerobic digestion was carried out at 37 °C, in batch operation mode. Biogas volumes produced and the concentration–time profiles of volatile fatty acids were analysed for different initial ratios of the mixed feedstock. All the mixtures performed better than the single feedstock. The optimal biogas yield was obtained with the co-digestion of a mixture containing 75% OFMSW and 25% giant reed, which produced 236 mL CH4/g VS with a 1.5-fold increase respect to the digestion of OFMSW alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AcoD:

Anaerobic co-digestion

AD:

Anaerobic digestion

COD:

Chemical oxygen demand

GR:

Giant reed

OFMSW:

Organic fraction of municipal wastes

RMSE:

Root-mean-squared error of regression

SS:

Sewage sludges

TS:

Total solids

VFA:

Volatile fatty acids

VS:

Volatile solids

References

  1. Ackerman F (2000) Waste management and climate change. Local Environ 5(2):223–229. https://doi.org/10.1080/13549830050009373

    Article  Google Scholar 

  2. ASTM E1755-01 (2015) Standard test method for ash in biomass, West Conshohocken, PA. https://doi.org/10.1520/e1755-01r15

  3. ASTM E871-82 (2013) Standard test method for moisture analysis of particulate wood fuels, West Conshohocken, PA. https://doi.org/10.1520/e0871-82r13

  4. ASTM E872-82 (2013) Standard test method for volatile matter in the analysis of particulate wood fuels, West Conshohocken, PA. https://doi.org/10.1520/e0872-82r13

  5. Ausiello A, Micoli L, Pirozzi D, Toscano G, Turco M (2015) Biohydrogen production by dark fermentation of Arundo donax for feeding fuel cells. Chem Eng Trans 43:385–390. https://doi.org/10.3303/CET1543065

    Article  Google Scholar 

  6. Ausiello A, Florio C, Micoli L, Toscano G, Turco M, Pirozzi D (2017) Biohydrogen production by dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria. Int J Hydrog Energy 42(52):30599–30612. https://doi.org/10.1016/j.ijhydene.2017.10.021

    Article  Google Scholar 

  7. Barber RD, Ferry JG (2001) Methanogenesis. Encyclopedia of life sciences. Nature Publishing Group, London. https://doi.org/10.1038/npg.els.0000475 [Online]

    Chapter  Google Scholar 

  8. Bolzonella D, Pavan P, Mace S, Cecchi F (2006) Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol 53(8):23–32. https://doi.org/10.2166/wst.2006.232

    Article  Google Scholar 

  9. Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour Technol 127:275–280. https://doi.org/10.1016/j.biortech.2012.09.081

    Article  Google Scholar 

  10. Chavalparit O, Sasananan S, Kullavanijaya P, Charoenwuttichai C (2018) Anaerobic co-digestion of hydrolysate from alkali pre-treated oil palm empty fruit bunches with biodiesel waste glycerol. J Mater Cycles Waste Manag 20:336–344. https://doi.org/10.1007/s10163-017-0585-5

    Article  Google Scholar 

  11. Chen X, Yan W, Sheng K, Sanati M (2014) Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Bioresour Technol 154:215–221. https://doi.org/10.1016/j.biortech.2013.12.054

    Article  Google Scholar 

  12. Corno L, Pilu R, Adani F (2014) Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Biotechnol Adv 32(8):1535–1549. https://doi.org/10.1016/j.biotechadv.2014.10.006

    Article  Google Scholar 

  13. De la Rubia MA, Villamil JA, Rodriguez JJ, Borja R, Mohedano AF (2018) Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge. Waste Manag 76:315–322. https://doi.org/10.1016/j.wasman.2018.02.046

    Article  Google Scholar 

  14. Dennehy C, Lawlor PG, McCabe MS, Cormican P, Sheahan J, Jiang Y, Gardiner GE (2018) Anaerobic co-digestion of pig manure and food waste; effects on digestate biosafety, dewaterability, and microbial community dynamics. Waste Manag 71:532–541. https://doi.org/10.1016/j.wasman.2017.10.047

    Article  Google Scholar 

  15. Department for Environment, Food and Rural Affairs (2015) Anaerobic Digestion Strategy and Action Plan Annual Report. https://www.gov.uk/government/publications/anaerobic-digestion-strategy-and-action-plan-annual-report-2013-to-2014. Accessed 11 Sept 2018

  16. Eaton A, Franson M (2005) Standard methods for the examination of water and wastewater American Public Health Association, American Water Works Association, and Water Environment Federation. American Public Health Association, Washington

    Google Scholar 

  17. Etuwe CN, Momoh YOL, Iyagba ET (2016) Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste Biomass Valor 7:543–550. https://doi.org/10.1007/s12649-016-9482-8

    Article  Google Scholar 

  18. Fantozzi F, Buratti C (2011) Anaerobic digestion of mechanically treated OFMSW: experimental data on biogas/methane production and residues characterization. Bioresour Technol 102:8885–8892. https://doi.org/10.1016/j.biortech.2011.06.077

    Article  Google Scholar 

  19. Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Book  Google Scholar 

  20. Fiorentino N, Ventorino V, Rocco C, Cenvinzo V, Agrelli D, Gioia L, Di Mola I, Adamo P, Pepe O, Fagnano M (2016) Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Sci Total Environ 575:1375–1383. https://doi.org/10.1016/j.scitotenv.2016.09.220

    Article  Google Scholar 

  21. Forster Carneiro T, Perez M, Romero LI, Sales D (2007) Dry thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresour Technol 98:3195–3203. https://doi.org/10.1016/j.biortech.2006.07.008

    Article  Google Scholar 

  22. Guven H, Akca MS, Iren E, Keles F, Ozturk I, Altinbas M (2018) Co-digestion performance of organic fraction of municipal solid waste with leachate: preliminary studies. Waste Manag 71:775–784. https://doi.org/10.1016/j.wasman.2017.04.039

    Article  Google Scholar 

  23. Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

    Article  Google Scholar 

  24. Ismail ZZ, Noori NA (2018) Anaerobic co-digestion of giant reed for biogas recovery. J Eng 24(3):68–83. https://doi.org/10.31026/j.eng.2018.03.06

    Article  Google Scholar 

  25. KADA Research (2013) Anaerobic digestion. A market profile. http://www.adbioresources.org/wp-content/uploads/2013/04/KADA-Final-AD-report-March-2013.pdf?_ga¼1.50385889.951436547. Accessed 11 Sept 2018

  26. Li W, Loh KC, Zhang J, Tong YW, Dai Y (2018) Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system. Appl Energy 209:400–408. https://doi.org/10.1038/s41598-017-01408-w

    Article  Google Scholar 

  27. Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46:125–132. https://doi.org/10.1016/j.biombioe.2012.09.014

    Article  Google Scholar 

  28. Maragkaki AE, Vasileiadis I, Fountoulakis M, Kyriakou A, Lasaridi K, Manios T (2018) Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste Manag 71:644–651. https://doi.org/10.1016/j.wasman.2017.08.016

    Article  Google Scholar 

  29. Mata-Alvarez J, Dosta J, Macé S, Astals S (2011) Co-digestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111. https://doi.org/10.3109/07388551.2010.525496

    Article  Google Scholar 

  30. Muthanna JA (2016) Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments: review. J Taiwan Inst Chem E 63:336–343. https://doi.org/10.1016/j.jtice.2016.03.030

    Article  Google Scholar 

  31. Negi S, Dhar H, Hussain A, Kumar S (2018) Biomethanation potential for co-digestion of municipal solid waste and rice straw: a batch study. Bioresour Technol 254:139–144. https://doi.org/10.1016/j.biortech.2018.01.070

    Article  Google Scholar 

  32. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380

    Google Scholar 

  33. Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5:14–21. https://doi.org/10.1016/j.btre.2014.10.005

    Article  Google Scholar 

  34. Panyaping K, Moontee P (2018) Potential of biogas production from mixed leaf and food waste in anaerobic reactors. J Mater Cycles Waste Manag 20:723–737. https://doi.org/10.1007/s10163-017-0629-x

    Article  Google Scholar 

  35. Parkin G, Owen W (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112(5):867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867)

    Article  Google Scholar 

  36. Pham CH, Triolo JM, Cu TTT, Pedersen L, Sommer SG (2013) Validation and recommendation of methods to measure biogas production potential of animal manure. Asian-Australas J Anim Sci 26(6):864. https://doi.org/10.5713/ajas.2012.12623

    Article  Google Scholar 

  37. Pinto MPM, Mudhoo A, de Alencar Neves T, Berni MD, Forster-Carneiro T (2018) Co-digestion of coffee residues and sugarcane vinasse for biohythane generation. J Environ Chem Eng 6(1):146–155. https://doi.org/10.1016/j.wasman.2017.07.016

    Article  Google Scholar 

  38. Rana R, Ganguly R, Gupta AK (2018) Physico-chemical characterization of municipal solid waste from Tricity region of northern India: a case study. J Mater Cycles Waste Manag 20:678. https://doi.org/10.1007/s10163-017-0615-3

    Article  Google Scholar 

  39. Reddy K, Hettiarachchi H, Gangathulasi J, Bogner J, Lagier T (2009) Geotechnical properties of synthetic municipal solid waste. Int J Geotech Eng 3(3):429–438. https://doi.org/10.3328/IJGE.2009.03.03.429-438

    Article  Google Scholar 

  40. Sharma A, Ganguly R, Gupta AK (2018) Matrix method for evaluation of existing solid waste management system in Himachal Pradesh, India. J Mater Cycles Waste Manag 20(3):1813–1831. https://doi.org/10.1007/s10163-018-0703-z

    Article  Google Scholar 

  41. Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW (2015) An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renew Sustain Energy Rev 50:346–362. https://doi.org/10.1016/j.rser.2015.04.129

    Article  Google Scholar 

  42. Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7:609–616. https://doi.org/10.1016/S1093-0191(02)00049-7

    Article  Google Scholar 

  43. Tanahashi M (1990) Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood research: bulletin of the Wood Research Institute Kyoto University 77:49–117. http://hdl.handle.net/2433/53271. Accessed 11 Sept 2018

  44. Toscano G, Ausiello A, Micoli L, Zuccaro G, Pirozzi D (2013) Anaerobic digestion of residual lignocellulosic materials to biogas and biohydrogen. Chem Eng Trans 32:487–492. https://doi.org/10.3303/CET1332082

    Article  Google Scholar 

  45. Tsapekos P, Kougias PG, Kuthiala S, Angelidaki I (2018) Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers Manag 159:1–6. https://doi.org/10.1016/j.enconman.2018.01.002

    Article  Google Scholar 

  46. Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65. https://doi.org/10.1016/j.resconrec.2017.01.024

    Article  Google Scholar 

  47. Xie S, Hai FI, Zhan X, Guo W, Ngo HH, Price WE, Nghiem LD (2016) Anaerobic co-digestion: a critical review of mathematical modelling for performance optimization. Bioresour Technol 222:498–512. https://doi.org/10.1016/j.biortech.2016.10.015

    Article  Google Scholar 

  48. Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530. https://doi.org/10.1016/j.renene.2015.01.033

    Article  Google Scholar 

  49. Yoon Y, Lee S, Kim K, Jeon T, Shin S (2018) Study of anaerobic co-digestion on wastewater treatment sludge and food waste leachate using BMP test. J Mater Cycles Waste Manag 20:283–292. https://doi.org/10.1007/s10163-017-0581-9

    Article  Google Scholar 

  50. Zahedi S, Sales D, García-Morales JL, Solera R (2018) Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste. Biosyst Eng 170:108–116. https://doi.org/10.1016/j.biosystemseng.2018.04.005

    Article  Google Scholar 

  51. Zhang H, Luo L, Li W, Wang X, Sun Y, Sun Y, Gong W (2018) Optimization of mixing ratio of ammoniated rice straw and food waste co-digestion and impact of trace element supplementation on biogas production. J Mater Cycles Waste Manag 20:745–753. https://doi.org/10.1007/s10163-017-0634-0

    Article  Google Scholar 

  52. Zhu B, Gikas P, Zhang R, Lord J, Jenkins B, Li X (2009) Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour Technol 100(3):1122–1129. https://doi.org/10.1016/j.biortech.2008.08.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Toscano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zuhairi, F., Micoli, L., Florio, C. et al. Anaerobic co-digestion of municipal solid wastes with giant reed under mesophilic conditions. J Mater Cycles Waste Manag 21, 1332–1340 (2019). https://doi.org/10.1007/s10163-019-00886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00886-6

Keywords

Navigation