Skip to main content
Log in

Nanoscale thermal transport in epoxy matrix composite materials reinforced with carbon nanotubes and graphene nanoplatelets

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The technology related to hybrid filler-reinforced polymer matrix composite materials is growing at a high rate with increasing interest and usage. This study presents a way of increasing the thermal conductivity of polymer matrix composites by the use of a hybrid filler consisting of carbon nanotubes and graphene nanoplatelets and preliminarily clarifies the mechanisms that lead to the synergistic reinforcement of composite thermal conductivity at the nanoscale. The focus of this study was upon the fundamental relationships between nanometer-scale reinforcement structures and macroscopic composite thermal properties. The benefits and limitations associated with the incorporation of the hybrid filler into an epoxy matrix were evaluated. The results indicated that there exists an evident synergistic reinforcing effect between carbon nanotubes and graphene nanoplatelets on composite thermal conductivity. A significant increase has been gained in composite thermal conductivity, but low loading is required in order to exploit the benefits derived from the unique structure of the hybrid filler. Filler loading must be controlled very accurately in order to ensure that a critical threshold is not reached, beyond which there is a decrease in thermal conductivity, compared to that of graphene nanoplatelet-reinforced composites. The synergistic reinforcing benefits to composite thermal conductivity and is derived from effective conducting pathways formed between carbon nanotubes and graphene nanoplatelets within polymer matrices. The results can offer practical guidance on how to improve thermal transport properties for polymer matrix composite materials.

The transport behavior of thermal energy in epoxy matrix composite materials at the nanoscale is studied. There exists an evident synergistic reinforcing effect between carbon nanotubes and graphene nanoplatelets on composite thermal conductivity, but low loading is required to exploit the benefits derived from such a hybrid nanoparticle filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal A, Satapathy A (2015) Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. International Journal of Thermal Sciences 89:203–209

    CAS  Google Scholar 

  • Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals 209:41–46

    CAS  Google Scholar 

  • Bagotia N, Choudhary V, Sharma DK (2019) Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Composites Part B: Engineering 159:378–388

    CAS  Google Scholar 

  • Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10:569–581

    CAS  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Letters 8:902–907

    CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    CAS  Google Scholar 

  • Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters 91:201910

    Google Scholar 

  • Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Applied Physics Letters 87:161909

    Google Scholar 

  • Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science 61:1–28

    CAS  Google Scholar 

  • Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L (2014) Nanoscale thermal transport. II. 2003-2012. Applied Physics Reviews 1: 011305.

    Google Scholar 

  • Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50:5380–5386

    CAS  Google Scholar 

  • Chegel R, Behzad S (2019) Tight binding theory of thermal conductivity of doped carbon nanotube. Physica E: Low-dimensional Systems and Nanostructures 114:113586

    CAS  Google Scholar 

  • Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Progress in Polymer Science 59:41–85

    CAS  Google Scholar 

  • Chu K, Li W-S, Jia C-C, Tang F-L (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Applied Physics Letters 101:211903

    Google Scholar 

  • Clancy TC, Gates TS (2006) Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 47:5990–5996

    CAS  Google Scholar 

  • Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597

    CAS  Google Scholar 

  • Gaska K, Rybak A, Kapusta C, Sekula R, Siwek A (2015) Enhanced thermal conductivity of epoxy-matrix composites with hybrid fillers. Polymers for Advanced Technologies 26:26–31

    CAS  Google Scholar 

  • Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 92:151911

    Google Scholar 

  • Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121

    CAS  Google Scholar 

  • Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40:2417–2421

    CAS  Google Scholar 

  • Han NR, Cho JW (2018) Effect of click coupled hybrids of graphene oxide and thin-walled carbon nanotubes on the mechanical properties of polyurethane nanocomposites. Composites Part A: Applied Science and Manufacturing 109:376–381

    CAS  Google Scholar 

  • Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science 36:914–944

    CAS  Google Scholar 

  • Hu H, He Y, Long Z, Zhan Y (2017) Synergistic effect of functional carbon nanotubes and graphene oxide on the anti-corrosion performance of epoxy coating. Polymers for Advanced Technologies 28:754–762

    CAS  Google Scholar 

  • Hua Y, Li F, Liu Y, Huang G-W, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2017) Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Composites Science and Technology 149:294–304

    CAS  Google Scholar 

  • Huang X, Zhi C, Jiang P (2012) Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. The Journal of Physical Chemistry C 116:23812–23820

    CAS  Google Scholar 

  • Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Materials Science and Engineering: R: Reports 132:1–22

    Google Scholar 

  • Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nature Materials 2:731–734

    CAS  Google Scholar 

  • Kaur S, Raravikar N, Helms BA, Prasher R, Ogletree DF (2014) Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nature Communications 5:3082

    Google Scholar 

  • Khare KS, Khabaz F, Khare R (2014) Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions. ACS Applied Materials & Interfaces 6:6098–6110

    CAS  Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87:215502

    CAS  Google Scholar 

  • Kim HM, Lee S, Song YS, Lee D (2019) Synergistic improvement of electrical and thermal conductivities of carbon-based nanocomposites and its prediction by Mori-Tanaka scheme with interfacial resistances. Composite Structures 211:56–62

    Google Scholar 

  • King JA, Barton RL, Hauser RA, Keith JM (2008a) Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polymer Composites 29:421–428

    CAS  Google Scholar 

  • King JA, Hauser RA, Tomson AM, Wescoat IM, Keith JM (2008b) Synergistic effects of carbon fillers in thermally conductive liquid crystal polymer based resins. Journal of Composite Materials 42:91–107

    CAS  Google Scholar 

  • King JA, Keith JM, Glenn OL Jr, Miskioglu I, Cole AJ, McLaughlin SR, Pagel RM (2008c) Synergistic effects of carbon fillers on tensile and flexural properties in liquid-crystal polymer based resins. Journal of Applied Polymer Science 108:1657–1666

    CAS  Google Scholar 

  • King JA, Via MD, Mills OP, Alpers DS, Sutherland JW, Bogucki GR (2011) Effects of multiple carbon fillers on the electrical and thermal conductivity and tensile and flexural modulus of polycarbonate-based resins. Journal of Composite Materials 46:331–350

    Google Scholar 

  • Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362:547–553

    CAS  Google Scholar 

  • Konell JP, King JA, Miskioglu I (2004) Synergistic effects of carbon fillers on tensile and impact properties in nylon 6,6 and polycarbonate based resins. Polymer Composites 25:172–185

    CAS  Google Scholar 

  • Kong HX (2013) Hybrids of carbon nanotubes and graphene/graphene oxide. Current Opinion in Solid State and Materials Science 17:31–37

    CAS  Google Scholar 

  • Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH (2010) Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21:105702

    CAS  Google Scholar 

  • Lee G-W, Park M, Kim J, Lee JI, Yoon HG (2006) Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A: Applied Science and Manufacturing 37:727–734

    Google Scholar 

  • Lee S, Kim HM, Seong DG, Lee D (2019) Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites. Carbon 143:650–659

    CAS  Google Scholar 

  • Li W, Dichiara A, Bai J (2013) Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Composites Science and Technology 74:221–227

    CAS  Google Scholar 

  • Li C-Q, Zha J-W, Li Z-J, Zhang D-L, Wang S-J, Dang Z-M (2018) Towards balanced mechanical and electrical properties of thermoplastic vulcanizates composites via unique synergistic effects of single-walled carbon nanotubes and graphene. Composites Science and Technology 157:134–143

    CAS  Google Scholar 

  • Liang X, Cheng Q (2018) Synergistic reinforcing effect from graphene and carbon nanotubes. Composites Communications 10:122–128

    Google Scholar 

  • Lu H, Zhang J, Luo J, Gong W, Li C, Li Q, Zhang K, Hu M, Yao Y (2017) Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composites Part A: Applied Science and Manufacturing 102:1–8

    CAS  Google Scholar 

  • Luo T, Lloyd JR (2012) Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Advanced Functional Materials 22:2495–2502

    CAS  Google Scholar 

  • Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Applied Materials & Interfaces 5:4712–4724

    CAS  Google Scholar 

  • McNamara AJ, Joshi Y, Zhang ZM (2012) Characterization of nanostructured thermal interface materials - a review. International Journal of Thermal Sciences 62:2–11

    CAS  Google Scholar 

  • Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Materials Today 17:163–174

    CAS  Google Scholar 

  • Ni Y, Han H, Volz S, Dumitricǎ T (2015) Nanoscale azide polymer functionalization: a robust solution for suppressing the carbon nanotube-polymer matrix thermal interface resistance. The Journal of Physical Chemistry C 119:12193–12198

    CAS  Google Scholar 

  • Pokharel P, Xiao D, Erogbogbo F, Keles O, Lee DS (2019) A hierarchical approach for creating electrically conductive network structure in polyurethane nanocomposites using a hybrid of graphene nanoplatelets, carbon black and multi-walled carbon nanotubes. Composites Part B: Engineering 161:169–182

    CAS  Google Scholar 

  • Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proceedings of the National Academy of Sciences of the United States of America 106:13186–13189

    CAS  Google Scholar 

  • Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology 3:327–331

    CAS  Google Scholar 

  • Sagalianov I, Vovchenko L, Matzui L, Lazarenko O (2017) Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Nanoscale Research Letters 12:140

    CAS  Google Scholar 

  • Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Communications 152:1331–1340

    CAS  Google Scholar 

  • Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P (2004a) Effect of chemical functionalization on thermal transport of carbon nanotube composites. Applied Physics Letters 85:2229–2231

    CAS  Google Scholar 

  • Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG (2004b) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics 95:8136–8144

    CAS  Google Scholar 

  • Shenogina N, Shenogin S, Xue L, Keblinski P (2005) On the lack of thermal percolation in carbon nanotube composites. Applied Physics Letters 87:133106

    Google Scholar 

  • Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nature Communications 3:650

    Google Scholar 

  • Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials 27:2100–2106

    CAS  Google Scholar 

  • Song PC, Liu CH, Fan SS (2006) Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Applied Physics Letters 88:153111

    Google Scholar 

  • Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong B-S, Paik K-W, Jeon S (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials 25:732–737

    CAS  Google Scholar 

  • Song S, Cao M, Shan H, Du C, Li B (2018a) Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane. Materials & Design 156:242–251

    CAS  Google Scholar 

  • Song H, Liu J, Liu B, Wu J, Cheng H-M, Kang F (2018b) Two-dimensional materials for thermal management applications. Joule 2:442–463

    CAS  Google Scholar 

  • Su Y, Li JJ, Weng GJ (2018) Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 137:222–233

    CAS  Google Scholar 

  • Thostenson ET, Ziaee S, Chou T-W (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology 69:801–804

    CAS  Google Scholar 

  • Valentini L, Bon SB, Pugno NM, Santana MH, Lopez-Manchado MA, Giorgi G (2019) Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites. Composites Part B: Engineering 166:352–360

    CAS  Google Scholar 

  • Vijayan R, Ghazinezami A, Taklimi SR, Khan MY, Askari D (2019) The geometrical advantages of helical carbon nanotubes for high-performance multifunctional polymeric nanocomposites. Composites Part B: Engineering 156:28–42

    CAS  Google Scholar 

  • Wang T-Y, Tsai J-L (2016) Investigating thermal conductivities of functionalized graphene and graphene/epoxy nanocomposites. Computational Materials Science 122:272–280

    CAS  Google Scholar 

  • Warzoha RJ, Fleischer AS (2014) Heat flow at nanoparticle interfaces. Nano Energy 6:137–158

    CAS  Google Scholar 

  • Weber EH, Clingerman ML, King JA (2003a) Thermally conductive nylon 6,6 and polycarbonate based resins. I. Synergistic effects of carbon fillers. Journal of Applied Polymer Science 88:112–122

    CAS  Google Scholar 

  • Weber EH, Clingerman ML, King JA (2003b) Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling. Journal of Applied Polymer Science 88:123–130

    CAS  Google Scholar 

  • Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bulletin 32:314–322

    CAS  Google Scholar 

  • Wu H, Drzal LT (2013) High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: effect of percolation and particle size. Polymer Composites 34:2148–2153

    CAS  Google Scholar 

  • Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Advanced Materials 30:1705544

    Google Scholar 

  • Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803

    CAS  Google Scholar 

  • Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters 5:1842–1846

    CAS  Google Scholar 

  • Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites. Advanced Materials 20:4740–4744

    CAS  Google Scholar 

  • Yue L, Pircheraghi G, Monemian SA, Manas-Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets - Dispersion and synergy effects. Carbon 78:268–278

    CAS  Google Scholar 

  • Zhai S, Zhang P, Xian Y, Zeng J, Shi B (2018) Effective thermal conductivity of polymer composites: theoretical models and simulation models. International Journal of Heat and Mass Transfer 117:358–374

    CAS  Google Scholar 

  • Zhang Y, Park S-J (2018) In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Composites Part A: Applied Science and Manufacturing 112:40–48

    CAS  Google Scholar 

  • Zhang Y, Park S-J (2019) Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices. Polymer 168:53–60

    CAS  Google Scholar 

  • Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly(ether sulfone) composites. European Polymer Journal 49:3125–3134

    CAS  Google Scholar 

  • Zhang Y, Heo Y-J, Son Y-R, In I, An K-H, Kim B-J, Park S-J (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460

    CAS  Google Scholar 

  • Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. Journal of Materials Science 50:2797–2805

    CAS  Google Scholar 

  • Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Peng L, Gao W, Ying J, Chen Z, Gao C (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ningbo Institute of Materials Technology and Engineering for the support of preparation and characterization of polymer matrix composites.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51506048).

Author information

Authors and Affiliations

Authors

Contributions

JC conceived and designed the study and performed the experiments. All authors analyzed and interpreted the data regarding the thermal and electrical properties of polymer matrix composites and read and approved the final manuscript.

Corresponding author

Correspondence to Junjie Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, B. & Yan, L. Nanoscale thermal transport in epoxy matrix composite materials reinforced with carbon nanotubes and graphene nanoplatelets. J Nanopart Res 21, 256 (2019). https://doi.org/10.1007/s11051-019-4707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4707-y

Keywords

Navigation