Skip to main content

Advertisement

Log in

Anthraquinone from Edible Fungi Pleurotus ostreatus Protects Human SH-SY5Y Neuroblastoma Cells Against 6-Hydroxydopamine-Induced Cell Death—Preclinical Validation of Gene Knockout Possibilities of PARK7, PINK1, and SNCA1 Using CRISPR SpCas9

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) results from the degeneration of the nervous tissue brought about by ecological and hereditary components which affects nerve cells in the brain. It is the world’s second most normal neurodegenerative issue, which can essentially weaken the personal satisfaction, make reliance, and trigger untimely mortality of affected people. The commonness pace of PD is 0.5–1% among individuals in the age group of 65–69 years and 1–3% among those 80 or more. Clinical appearances incorporate bradykinesia, tremors, unbending nature, and postural unsteadiness; spectrums of non-motor symptoms include psychological hindrance and passionate and behavioral brokenness. In this study, 6-OHDA-induced neurotoxicity was analyzed for various cytotoxicity analyses. The genes identified were PINK1 (PTEN-induced kinase 1), PARK7 (Parkinsonism-associated deglycase) and SNCA 1 (alpha synuclein1) validated using CRISPR spcas9 genome editing tool. In this study, Anthraquinone isolated from Pleurotus ostreatus was treated against a dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), which induced neurotoxicity in SH-SY5Y cells. Experimental groups in SH-SY5Y neuroblastoma cells were treated with anthraquinone (50 nM) and 6-OHDA (100 nM). MTT and ROS assays were performed to assess the cell viability and oxidative stress within the cells, followed by mixed-member proportional (Mitochondrial membrane potential), dual staining, and immunoblotting. 6-OHDA-induced cell death in SH-SY5Y cells was dose-dependently attenuated by treatment with anthraquinone. The genes responsible for mutation were studied and the mutated RNAs knockout possibilities was studied using CRISPR spcas9 genome editing tool. Treatment with anthraquinone attenuated the level of oxidative stress and reduced the mitochondrial dysfunction associated with 6-OHDA treatment. Immunoblot analysis carried out with apoptotic markers showed that cytochrome C and caspase-3 expression increased significantly in anthraquinone-treated cells, whereas 6-OHDA-treated group showed a significant decrease when compared with an experimental control group. The mutated genes PARK7, PINK1, and SNCA1 were analyzed and found to exhibit four gene knock possibilities to treat PD. Reports demonstrate that other than following up on the biosynthesis of dopamine and its metabolites, these mixes counteract D2 receptors’ extreme touchiness. It is proposed that further examinations need be directed to better understand the activity of the bioactive mixes circulated in these edible fungi Pleurotus ostreatus. The gene knockout possibilities identified by CRISPR SpCas9 will pave a way for better research for PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AQ:

Anthraquinone

PD:

Parkinson’s disease

CRISPR:

Consistently interspaced short palindromic rehashes

6-OHDA:

6-hydroxydopamine

PARK7:

Parkinsonism-associated deglycase

PINK1:

PTEN-induced kinase 1

SNCA 1:

Sodium voltage-gated channel alpha subunit 1

References

  1. Hirsch, E., Graybiel, A. M., & Agid, Y. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature., 334, 345–348.

    Article  CAS  Google Scholar 

  2. Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., & Kieburtz, K. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology., 68(5), 384–386.

    Article  CAS  Google Scholar 

  3. Greenamyre, G. T., & Hastings, T. G. (2004). Parkinson’s-divergent causes, convergent mechanisms. Science, 304, 1120–1122.

    Article  CAS  Google Scholar 

  4. Chaudhuri, K. R., & Schapira, A. H. (2009). Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol, 8, 464–474.

    Article  CAS  Google Scholar 

  5. Aggarwal, B. B., Sundaram, C., Malani, N., & Ichikawa, H. (2007). Curcumin: the Indian solid gold. Adv. Exp. Med. Biol., 595, 1–75.

    Article  Google Scholar 

  6. Dexter, D. T., & Jenner, P. (2013). Parkinson disease: from pathology to molecular disease mechanisms. Free Radical Biology & Medicine, 62, 32–44.

    Article  Google Scholar 

  7. Hancock, D. B., Martin, E. R., Mayhew, G. M., Stajich, J. M., Jewet, R., Stacy, M. A., Scott, M. L., Vance, J. M., & Scott, W. K. (2008). Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurology, 8, 6–11.

    Article  Google Scholar 

  8. Priyadarshi, A., Khuder, S. A., Schaub, E. N., & Shrivastava, A. (2000). A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology., 21(4), 435–440.

    CAS  PubMed  Google Scholar 

  9. Dhanalakshmi, C., Manivasagam, T., Nataraj, J., Thenmozhi, A. J., & Essa, M. M. (2015). Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evidence-based Complementary and Alternative Medicine, 5, 626–028.

    Google Scholar 

  10. Nammi, B., Lodagala, K. M., & Behara, R. B. (2003). The juice of fresh leaves of Catharanthus roseus Linn. Reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complementary and Alternative Medicine, 3, 8–9.

    Article  Google Scholar 

  11. Bindhu, J., & Das, A. (2017). Evaluation edible oyster mushroom (Pleurotus ostreatus) on oxidative stress and neurological cognitive disorder in streptozotocin diabetic rat. Clin Inv (Lond), 7, 177–186.

    Google Scholar 

  12. Singleton, A., & Hardy, J. (2011). A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Human Molecular Genetics, 20(R2), R158–R162.

    Article  CAS  Google Scholar 

  13. Farrer, M. J., Hulihan, M. M., Kachergus, J. M., et al. (2009). DCTN1 mutations in Perry syndrome. Nature Genetics, 41(2), 163–165.

    Article  CAS  Google Scholar 

  14. Tamilselvam, K., Braidy, N., Manivasagam, T., Essa, M. M., Prasad, N. R., Karthikeyan, S. R., Thenmozhi, A. J., Selvaraju, S., & Guillemin, G. J. (2013). Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative Medicine and Cellular Longevity, 3, 24–29.

    Google Scholar 

  15. Cannon, J. R., Tapias, V. M., Na, H. M., Honick, A. S., Drolet, R. E., & Greenamyre, J. T. (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiology of Disease, 34(2), 279–290.

    Article  CAS  Google Scholar 

  16. Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: mechanisms and models. Neuron., 39(6), 889–909.

    Article  CAS  Google Scholar 

  17. Ganguli, M., Chandra, V., Kamboh, M. I., Johnston, J. M., Dodge, H. H., Thelma, B. K., Juyal, R. C., Pandav, R., Belle, S. H., & DeKosky, S. T. (2000). Apolipoprotein E polymorphism and Alzheimer disease: the indo-US cross national dementia study. Archives of Neurology, 57, 824–830.

    Article  CAS  Google Scholar 

  18. Fetoni, A. R., Paciello, F., Mezzogori, D., Rolesi, R., Eramo, S. L., Paludetti, G., & Troiani, D. (2015). Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling. British Journal of Cancer, 113, 1434–1444.

    Article  CAS  Google Scholar 

  19. Sirisidthi, K., Kosai, P., Jiraungkoorskul, K., & Jiraungkoorskul, W. (2016). Antithrombotic activity of turmeric (Curcuma longa): a review. Indian J Agric Res., 101–106.

  20. Abe, Y., Hashimoto, S., & Horie, T. (1999). Curcumin inhibition inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res., 9, 41–47.

    Article  Google Scholar 

  21. Mao, J. J., Powell, J., Water, C. L., Keen, H. H., Schmitz, M. E., & Gershwin, E. J. (1999). The influence of cocoa procyanidins on the transcription of interlukin-2 in peripheral blood mononuclear cells. International Journal of Immunotherapy, 15, 23–29.

    CAS  Google Scholar 

  22. Yong-Kee, C. J., Sidorova, E., Hanif, A., Perera, G., & Nash, J. E. (2012). Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson’s disease. Neurotoxicity Research, 21(2), 185–194.

    Article  CAS  Google Scholar 

  23. Marella, M., Seo, B. B., Matsuno-Yagi, A., & Yagi, T. (2007). Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. The Journal of Biological Chemistry, 282(33), 24146–24156.

    Article  CAS  Google Scholar 

  24. Ding, H. Q., Gao, J., Zhu, H. R., Xiong, Y., & Liu, J. (2008). Mitochondrial dysfunction enhances susceptibility to oxidative stress by down-regulation of thioredoxin in human neuroblastoma cells. Neurochemical Research, 33(1), 43–50.

    Article  CAS  Google Scholar 

  25. Moon, K. H., Lee, J. H., Park, D., Geum, K., & Kim, K. (2005). Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q (10). Journal of Neurochemistry, 93, 1199–1208.

    Article  CAS  Google Scholar 

  26. Muthuraman, P., Ramkumar, K., & Kim, D. H. (2014). Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Applied Biochemistry and Biotechnology, 174(8), 2851–2874.

    Article  CAS  Google Scholar 

  27. Ramakrishnan, R., Elangovan, P., & Pari, L. (2017). Protective role of tetrahydrocurcumin: an active polyphenolic curcuminoid on cadmium-induced oxidative damage in rats. Applied Biochemistry and Biotechnology, 183(1), 51–69.

    Article  CAS  Google Scholar 

  28. da Rocha, P. D. S., Campos, J. F., Nunes-Souza, V., do Carmo Vieira, M., de Araujo Boleti, A. P., Rabelo, L. A., dos Santos, E. L., & de Picoli Souza, K. (2017). Antioxidant and protective effects of Schinus terebinthifolius raddi against doxorubicin-induced toxicity. Applied Biochemistry and Biotechnology, 1–16.

  29. Isenberg, J. S., & Klaunig, J. E. (2000). Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicological Sciences, 53(2), 340–351.

    Article  CAS  Google Scholar 

  30. Doran, E., & Halestrap, A. P. (2000). Cytochrome C release from isolated rat liver mitochondria can occur independently of outer membrane rupture: possible role of contact sites. The Biochemical Journal, 348, 343–350.

    Article  CAS  Google Scholar 

  31. Kim, H. Y., Chung, J. M., & Chung, K. (2008). Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neuroscience Letters, 447, 87–91.

    Article  CAS  Google Scholar 

  32. Clark, J., Clore, E. L., Zheng, K., Adame, A., Masliah, E., & Simon, D. K. (2010). Oral N-acetylcysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One, 51, 23–33.

    Google Scholar 

  33. Dairam, A., Limson, J. L., Watkin, G. M., Antunes, E., & Daya, S. (2007). Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. Journal of Agricultural and Food Chemistry, 55, 1039–1044.

    Article  CAS  Google Scholar 

  34. Kim, H., Ham, S., Jo, M., Lee, G. H., Lee, Y.-S., Shin, J.-H., & Lee, Y. (2017). CRISPR-Cas9 mediated telomere removal leads to mitochondrial stress and protein aggregation. International Journal of Molecular Sciences, 18, 2093.

    Article  Google Scholar 

  35. Reczek, C. R., Birsoy, K., Kong, H., Martinez-Reyes, I., Wang, T., Gao, P., Sabatini, D. M., & Chandel, N. S. (2017). A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nature Chemical Biology, 13(12), 1274–1279.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This is a doctoral research work carried out by the first author. Authors gratefully acknowledge Department of Biotechnology and Bannari Amman Institute of Technology for providing a well-equipped and ambient environment for the successful completion of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunava Das.

Ethics declarations

Consent for publication

All authors solely agree for publishing the research

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

J., B., Das, A. & Sakthivel, K.M. Anthraquinone from Edible Fungi Pleurotus ostreatus Protects Human SH-SY5Y Neuroblastoma Cells Against 6-Hydroxydopamine-Induced Cell Death—Preclinical Validation of Gene Knockout Possibilities of PARK7, PINK1, and SNCA1 Using CRISPR SpCas9. Appl Biochem Biotechnol 191, 555–566 (2020). https://doi.org/10.1007/s12010-019-03188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03188-7

Keywords

Navigation