Skip to main content

Advertisement

Log in

Drug Delivery of Amphotericin B through Core-Shell Composite Based on PLGA/Ag/Fe3O4: In Vitro Test

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This research aimed at developing and designing a slow and targeted delivery of Amphotericin B (AmB) antibiotic by placing three types of shells containing different ratios of biodegradable and biocompatible polymers poly (D, L-lactide)-co-(glycolide) (PLGA), polyethylene glycol (PEG), and polyvinyl pyrrolidone (PVP) on core-shell structures including silver nanoparticles that were activated with magnetic nanoparticles (MNPs). Emulsion solvent evaporation technique was employed to synthesize three types of shells: (i) (PVP-PEG) (100:20, w/w), (ii) (PLGA-PEG) (100:20, w/w), and (iii) (PLGA-PEG) (50:10, w/w) introduced as D1, D2, and D3 respectively. The in vitro release of AmB was examined in aqueous medium phosphate buffer saline (PBS) in pH~ 7.2. Several spectroscopy methods characterized the structure and properties of the nanoparticles. In vitro antifungal activity of pure AmB and D1, D2, and D3 was studied against Candida albicans (C. albicans). The results explained that frequency of drug released from D2 at the first 10 h was (18%) that was compared with D1 (30%) and D3 (24%) at the same time. D2 had more efficient and longer targeted controlled release. The findings showed that D2 can be used as an effective carrier for in vitro targeted controlled release and D2 and D3 had powerful activity against C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jain, K. K. (2008). Drug delivery systems. Totowa, USA: Humana.

    Book  Google Scholar 

  2. Nabipour, H. (2019). Design and evaluation of non-steroidal anti-inflammatory drug intercalated into layered zinc hydroxide as a drug delivery system. Journal of Inorganic and Organometallic Polymers, 29(5), 1807–1817. https://doi.org/10.1007/s10904-019-01143-x.

    Article  CAS  Google Scholar 

  3. Saltzman, W. M. (2001). Drug delivery engineering principles for drug therapy. USA: Oxford Press.

    Google Scholar 

  4. Perrie, Y., & Redes, T. (2012). FASTtrack: pharmaceutics-drug delivery and targeting (second ed.). USA: Pharmaceutical Press.

    Google Scholar 

  5. Yun, Y. H., Lee, B. K., & Park, K. (2015). Controlled drug delivery: historical perspective for the next generation. Journal of Controlled Release, 219, 2–7. https://doi.org/10.1016/j.jconrel.2015.10.005.

  6. Benita, S. (2006). Microencapsulation methods and industrial application (2nd ed.). Boca Raton, USA: CRC.

    Google Scholar 

  7. De Villiers, M. M., Aramwit, P., & Kwon, G. S. (2008). Nanotechnology in drug delivery. USA: AAPS.

    Google Scholar 

  8. Arias, J. L. (2014). Nanotechnology and drug delivery (Vol. 1: Nanoplatforms in Drug Delivery). USA: CRC.

    Book  Google Scholar 

  9. Wahajuddin, S. A. (2012). Superparamagnetic iron oxide nanoparticle: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 7, 3445–3471. https://doi.org/10.2147/IJN.S30320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, J. H., Kim, J. W., & Cheon, J. (2013). Magnetic nanoparticles for multi-imaging and drug delivery. Molecules and Cells, 35(4), 274–284. https://doi.org/10.1007/s10059-013-0103-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Figuerola, A., Di Corato, R., Manna, L., & Pellegrino, T. (2010). From iron oxide nanoparticle towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 62(2), 126–143. https://doi.org/10.1016/j.phrs.2009.12.012.

    Article  CAS  PubMed  Google Scholar 

  12. Mishra, A. K. (2013). Nanomedicine for drug delivery and therapeutics. USA: Wiley.

    Book  Google Scholar 

  13. Kaparissides, C., Alexandridou, S., Kotti, K., & Chaitidou, S. (2006). Recent advanced in novel drug delivery systems. Journal of Nanotechnology, 2, 1–11. https://doi.org/10.2240/azojono0111.

    Article  CAS  Google Scholar 

  14. Yashwant, P. (2016). Recent developments in nanoparticulate drug delivery systems. In Y. Pathak & D. Thassu (Eds.), Drug delivery nanoparticles formation and characterization (pp. 1–15). New York: Informa Healthcare Inc.

    Google Scholar 

  15. Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh, R., & Lillard Jr., J. W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223. https://doi.org/10.1016/j.yexmp.2008.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Mello, R. S., Das, K. P., & Das, N. G. (2016). Polymeric nanoparticles for small-molecule drugs: biodegradation of polymers and fabrication of nanoparticles. In Y. Pathak & D. Thassu (Eds.), Drug delivery nanoparticles formation and characterization (pp. 16–34). New York: Informa Healthcare Inc.

    Google Scholar 

  18. Parveen, S., & Sahoo, S. K. (2008). Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting, 16(2), 108–123. https://doi.org/10.1080/10611860701794353.

    Article  CAS  PubMed  Google Scholar 

  19. Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Breton, A. L., & Preat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release, 161(2), 505–522. https://doi.org/10.1016/j.jconrel.2012.01.043.

    Article  CAS  PubMed  Google Scholar 

  20. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  21. Stolink, S., Illum, L., & Davis, S. S. (1995). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214. https://doi.org/10.1016/0169-409X(95)00025-3.

    Article  Google Scholar 

  22. Owens III, D. E., & Peppas, N. A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  23. Jee, J.-P., McCoy, A., & Mecozzi, S. (2012). Encapsulation and release of amphotericin B from an ABC triblock fluorous copolymer. Pharmaceutical Research, 29(1), 69–82. https://doi.org/10.1007/s11095-011-0511-9.

    Article  CAS  PubMed  Google Scholar 

  24. Reis, C. P., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2(1), 8–21. https://doi.org/10.1016/j.nano.2005.12.003.

    Article  CAS  Google Scholar 

  25. Wu, T. C. (1994). On the development of antifungal agents: perspective of the U.S. Food and Drug Administration. Clinical Infectious Disease, 19(Suppl.1), S54–S58. https://doi.org/10.1093/clinids/19.supplement_1.s54.

    Article  Google Scholar 

  26. Zu, Y., Sun, W., Zhao, X., Wang, W., Li, Y., Ge, Y., Liu, Y., & Wang, K. (2014). Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. European Journal of Pharmaceutical Sciences, 53, 109–117. https://doi.org/10.1016/j.ejps.2013.12.005.

    Article  CAS  PubMed  Google Scholar 

  27. Ménez, C., Legrand, P., Rosilio, V., Lesieur, S., & Barratt, G. (2007). Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Molecular Pharmaceutics, 4(2), 281–288. https://doi.org/10.1021/mp0601143.

    Article  CAS  PubMed  Google Scholar 

  28. Dutcher, J. D. (1968). The discovery and development of amphotericin B. Diseases of the Chest, 54(Suppl.1), 296–298. https://doi.org/10.1378/chest.54.supplement_1.296.

    Article  Google Scholar 

  29. Torrado, J. J., Espada, R., Ballesteros, M. P., & Torrado-Santiago, S. (2008). Amphotericin B formulations and drug targeting. Journal of Pharmaceutical Sciences, 97(7), 2405–2425. https://doi.org/10.1002/jps.21179.

    Article  CAS  PubMed  Google Scholar 

  30. Van de Ven, H., Paulussen, C., Feijens, P. B., Matheeussen, A., Rombaut, P., Kayaert, P., Van den Mooster, G., Weyenberg, W., Cos, P., Maes, L., & Ludwing, A. (2012). PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. Journal of Controlled Release, 161(3), 795–803. https://doi.org/10.1016/j.jconrel.2012.05.037.

    Article  CAS  PubMed  Google Scholar 

  31. Conover, C. D., Zhao, H., Longley, C. B., Shum, K. L., & Greenwald, R. B. (2003). Utility of poly (ethylene glycol) conjugation to create prodrugs of amphotericin B. Bioconjugate Chemistry, 14(3), 661–666. https://doi.org/10.1021/bc0256594.

    Article  CAS  PubMed  Google Scholar 

  32. Nahar, M., & Jain, N. K. (2009). Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharmaceutical Research, 26(12), 2588–2598. https://doi.org/10.1007/s11095-009-9973-4.

    Article  CAS  PubMed  Google Scholar 

  33. Khalafalla, S., & Reimers, G. (1980). Preparation of dilution-stable aqueous magnetic fluids. IEEE Transactions on Magnetics, 16(2), 178–183. https://doi.org/10.1109/TMAG.1980.1060578.

    Article  Google Scholar 

  34. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y. S., Jeong, D. H., & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001.

    Article  CAS  Google Scholar 

  35. Morris, M. C., Depollier, J., Merry, J., & Heitz, F. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19(12), 1173–1176. https://doi.org/10.1038/nbt1201-1173.

    Article  CAS  PubMed  Google Scholar 

  36. Carraro, T. C. M. M., Khalil, N. M., & Mainardes, R. M. (2016). Amphotericin B-loaded polymeric nanoparticle: formulation optimization by factorial design. Pharmaceutical Development and Technology, 21(2), 140–146. https://doi.org/10.3109/10837450.2014.979942.

    Article  CAS  PubMed  Google Scholar 

  37. AL-Quadeib, B. T., Radwan, M. A., Šiller, L., Horrocks, B., & Wright, M. C. (2015). Stealth amphotericin B for oral drug delivery: in vitro optimization. Saudi Pharmaceutical Journal, 23(3), 290–302. https://doi.org/10.1016/j.jsps.2014.11.004.

    Article  PubMed  Google Scholar 

  38. Taatabaei Mirakabad, F. S., Akbarzadeh, A., Milani, M., Zarghami, N., Taheri-Anganeh, M., Zeighamian, V., Badrzadeh, F., & Rahmati-Yamchi, M. (2016). A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 423–430. https://doi.org/10.3109/21691401.2014.955108.

    Article  CAS  Google Scholar 

  39. Yang, Y., Ren, S., Zhang, X., Yu, Y., Liu, C., Yang, J., & Miao, L. (2018). Safety and efficacy of PLGA (Ag- Fe3O4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field. International Journal of Nanomedicine, 13, 3751–3762. https://doi.org/10.2147/IJN.S159860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi, K. C., Bang, J. Y., Kim, P. I., Kim, C., & Song, C. E. (2008). Amphotericin B-incorporated polymeric micelles composed of poly (D, L-lactide-co-glycolide)/dextran graft copolymer. International Journal of Pharmaceutics, 355(1–2), 224–230. https://doi.org/10.1016/j.ijpharm.2007.12.011.

    Article  CAS  PubMed  Google Scholar 

  41. Kesavan, M. P., Kotla, N. G., Ayyanaar, S., Kumar, R. G., Sivaraman, G., Webster, T. J., & Rajesh, J. (2018). A theranostic nanocomposite system based on iron oxide-drug nanocages for targeted magnetic field responsive chemotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 14(5), 1643–1654. https://doi.org/10.1016/j.nano.2018.04.013.

    Article  CAS  Google Scholar 

  42. Hong, S., Li, Z., Li, C., Dong, C., & Shuang, S. (2018). β-Cyclodextrin grafted polypyrrole magnetic nanocomposites toward the targeted delivery and controlled release of doxorubicin. Applied Surface Science, 427, 1189–1198. https://doi.org/10.1016/j.apsusc.2017.08.201.

    Article  CAS  Google Scholar 

  43. Pachla, A., Lendzion-Bieluń, Z., Moszyński, D., Markowska-Szczupak, A., Narkiewicz, U., WrÓbel, R. J., Guskos, N., & Żołnierkiewicz, G. (2016). Synthesis and antibacterial properties of Fe3O4-Ag nanostructures. Polish Journal of Chemical Technology, 18(4), 110–116. https://doi.org/10.1515/pjct-2016-0079.

    Article  CAS  Google Scholar 

  44. Radwan, M. A., AL-Quadeib, B. T., Šiller, L., Wright, M. C., & Horrocks, B. (2017). Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Delivery, 24(1), 40–50. https://doi.org/10.1080/10717544.2016.1228715.

    Article  CAS  PubMed  Google Scholar 

  45. Jung, S. H., Lim, D. H., Jung, S. H., Lee, J. E., Jeong, K.-S., Seong, H., & Shin, B. C. (2009). Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. European Journal of Pharmaceutical Sciences, 37(3–4), 313–320. https://doi.org/10.1016/j.ejps.2009.02.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Moradi Dehaghi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadat Akhavi, S., Moradi Dehaghi, S. Drug Delivery of Amphotericin B through Core-Shell Composite Based on PLGA/Ag/Fe3O4: In Vitro Test. Appl Biochem Biotechnol 191, 496–510 (2020). https://doi.org/10.1007/s12010-019-03181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03181-0

Keywords

Navigation