Skip to main content
Log in

Continuous synthesis of tetraethyl thiuram disulfide with CO2 as acid agent in a gas-liquid microdispersion system

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Herein, a continuous synthetic method of tetraethyl thiuram disulfide (TETD) with CO2 as a weak acid reagent in a gas-liquid microdispersion reaction system has been described. A microdispersion reaction system comprising two microreactors for CO2 absorption and diethyldithiocarbamate acid subsequent oxidation reaction was developed. In the first step, the main products of absorption and oxidation reactions were identified. Next, the yield of TETD and selectivity of sodium diethyldithiocarbamate under different flow rates of raw materials, amount of CO2, aging effect, and pressure in the microreaction system were determined. The yield reached 89.03% based on 60% H2O2 dosage and the selectivity was 92.86% in less than 3 min of residence time, which was more than 30 min in the batch process. The space time yield in the microreaction system was ~20 times of that achieved in the batch process. The study provides a new successful reference for replacing batch synthesis by a continuous process using a microreaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

Abbreviations

mT :

theoretical mass of TETD (g)

ms :

sample amount (g)

wTETDNa :

the mass ratio of NaEt2DTC in its solution

FTETDNa :

the mass flow rate of NaEt2DTC solution (g/min)

FH2O2 :

the mass flow rate of H2O2 solution (g/min)

mA :

the mass of TETD solid abtained(g)

sH2O2 :

the H2O2 dosage

FCO2 :

the volume flow rate of CO2 (mL/min)

ts :

sampling time(s)

CTETDNa :

the mass ratio of NaEt2DTC detected by UV

mm :

the mass of mother liqour (g)

References

  1. Gradwell MHS, Grooff D (2002) A comparison of tetraethylthiuram and tetramethylthiuram disulfide vulcanization. II. Reactions in rubber. J Appl Polym Sci 83(5):1119–1127

    Article  CAS  Google Scholar 

  2. Obholzer AM (1974) A follow-up study of nineteen alcoholic patients treated by means of tetraethyl-Thiuram disulfide (Antabuse) implants Br. J Addict 69:19–23

    Article  CAS  Google Scholar 

  3. Graber DG, Crone WCM (1950) Antabuse (Tetraethyl Thiuram Disulfide). Analytical Chemistry 22:620–621

    Article  Google Scholar 

  4. Brewer C (1993) Recent developments in disulfiram treatment. Alcohol Alcohol 28(4):383–395

    CAS  PubMed  Google Scholar 

  5. Wang M, Song X, Ma N (2014) Reduced graphene oxide as recyclable catalyst for synthesis of Bis(aminothiocarbonyl)disulfides from secondary amines and carbon disulfide. Catal Lett 144(7):1233–1239

    Article  CAS  Google Scholar 

  6. Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, Kraus M, Michalova M, Vaclavkova J, Dzubak P, Vrobel I, Pouckova P, Sedlacek J, Miklovicova A, Kutt A, Li J, Mattova J, Driessen C, Dou QP, Olsen J, Hajduch M, Cvek B, Deshaies RJ, Bartek J (2017) Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552(7684):194–199

    Article  CAS  Google Scholar 

  7. Ludwig Eisenhuth EHGZ (1984) Kleinwallstadt. Manfred Bergfeld, Erlenbach Process for the preparation of thiuram disulfides

    Google Scholar 

  8. Yao X, Zeng C, Wang C, Zhang L (2011) Two-step continuous synthesis of tetraethylthiuram disulfide in microstructured reactors. Korean J Chem Eng 28(3):723–730

    Article  CAS  Google Scholar 

  9. Hu J, Wang K, Deng J, Luo G (2018) Green synthesis of Thiuram disulfides with CO2 as an acid agent for sustainable development. Ind Eng Chem Res 57(49):16572–16578

    Article  CAS  Google Scholar 

  10. Zhang J, Gong C, Zeng X, Xie J (2016) Continuous flow chemistry: new strategies for preparative inorganic chemistry. Coord Chem Rev 324:39–53

    Article  CAS  Google Scholar 

  11. Chen GG, Luo GS, Xu JH, Wang JD (2004) Membrane dispersion precipitation method to prepare nanopartials. Powder Technol 139(2):180–185

    Article  CAS  Google Scholar 

  12. Luty-Błocho M, Wojnicki M (2015) Single-step synthesis of onion-like au—Pd—PtNPs nanoparticles using microflow system. Journal of Flow Chemistry 5(4):197–200

    Article  Google Scholar 

  13. Mason PB, Price KE, Steinbacher JL, Bogdan AR, Greener MQDT (2007) Approaches to Organic Synthesis Using Microreactor Technology. Chem. Rev. 107:2300–2318

    Article  CAS  Google Scholar 

  14. Webb D, Jamison TF (2010) Continuous flow multi-step organic synthesis. Chemical Science 1(6)

    Article  CAS  Google Scholar 

  15. Deng J, Zhang J, Wang K, Luo G (2018) Microreaction Technology for Synthetic Chemistry. Chin J Chem 37(2):161–170

    Article  Google Scholar 

  16. Zhang C, Zhang J, Luo G (2016) Kinetic study and intensification of acetyl guaiacol nitration with nitric acid—acetic acid system in a microreactor. Journal of Flow Chemistry 6(4):309–314

    Article  CAS  Google Scholar 

  17. Tan J, Shao HW, Xu JH, Lu YC, Luo GS (2011) Development of a membrane dispersion micro-absorber for CO2 capture. J Membr Sci 385-386:123–131

    Article  CAS  Google Scholar 

  18. Wang K, Luo G (2017) Microflow extraction: a review of recent development. Chem Eng Sci 169:18–33

    Article  CAS  Google Scholar 

  19. Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng 8:285–305

    Article  Google Scholar 

  20. Movsisyan M, Delbeke EI, Berton JK, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45(18):4892–4928

    Article  CAS  Google Scholar 

  21. Flowers BS, Hartman RL (2012) Particle handling techniques in microchemical processes. Challenges 3(2):194–211

    Article  Google Scholar 

  22. Hartman RL (2012) Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org Process Res Dev 16(5):870–887

    Article  CAS  Google Scholar 

  23. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897

    Article  Google Scholar 

  24. Poe SL, Cummings MA, Haaf MP, McQuade DT (2006) Solving the clogging problem: precipitate-forming reactions in flow. Angew Chem Int Ed Engl 45(10):1544–1548

    Article  CAS  Google Scholar 

  25. Marcati A, Serra C, Bouquey M, Prat L (2010) Handling of polymer particles in microchannels. Chemical Engineering & Technology 33(11):1779–1787

    Article  CAS  Google Scholar 

  26. Horie T, Sumino M, Tanaka T, Matsushita Y, Ichimura T, Yoshida J-i (2010) Photodimerization of Maleic Anhydride in a Microreactor Without Clogging. Org Process Res Dev 14:405–410

    Article  CAS  Google Scholar 

  27. Gunther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of Miscible Liquids in Segmented Gas-Liquid Flow. Langmuir 21

  28. Browne DL, Deadman BJ, Ashe R, Baxendale IR, Ley SV (2011) Continuous flow processing of slurries: evaluation of an agitated cell reactor. Org Process Res Dev 15(3):693–697

    Article  CAS  Google Scholar 

  29. Shu W, Pellegatti L, Oberli MA, Buchwald SL (2011) Continuous-flow synthesis of biaryls enabled by multistep solid-handling in a lithiation/borylation/Suzuki-Miyaura cross-coupling sequence. Angew Chem Int Ed Engl 50(45):10665–10669

    Article  CAS  Google Scholar 

  30. Lin X, Yan S, Zhou B, Wang K, Zhang J, Luo G (2017) Highly efficient synthesis of polyvinyl butyral (PVB) using a membrane dispersion microreactor system and recycling reaction technology. Green Chem 19(9):2155–2163

    Article  CAS  Google Scholar 

  31. Zhang JS, Wang K, Lu YC, Luo GS (2010) Characterization and modeling of micromixing performance in micropore dispersion reactors. Chem Eng Process Process Intensif 49(7):740–747

    Article  CAS  Google Scholar 

  32. Zhao S, Wang W, Shao T, Zhang M, Jin Y, Cheng Y (2013) Mixing performance and drug nano-particle preparation inside slugs in a gas–liquid microchannel reactor. Chem Eng Sci 100:456–463

    Article  CAS  Google Scholar 

  33. Wang K, Lu YC, Xu JH, Gong XC, Luo GS (2006) Reducing side product by enhancing mass-transfer rate. AICHE J 52(12):4207–4213

    Article  CAS  Google Scholar 

  34. Ishimura Y Wa Y (1988) Diethyldithiocarbamic acid S-oxide: a new class of Sulfine. J. Org. Chem 53:2119–2120

    Article  Google Scholar 

  35. Claiborne AL, Derek HM, Parsonage R (1993) PAUL ROSS, protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 7:1483–1490

    Article  CAS  Google Scholar 

  36. Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a Sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642

    Article  CAS  Google Scholar 

  37. Chen GG, Luo GS, Li SW, Xu JH, Wang JD (2005) Experimental approaches for understanding mixing performance of a minireactor. AICHE J 51(11):2923–2929

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 91334201, U1463208 and 21506110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Luo.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Tian, J., Wang, K. et al. Continuous synthesis of tetraethyl thiuram disulfide with CO2 as acid agent in a gas-liquid microdispersion system. J Flow Chem 9, 211–220 (2019). https://doi.org/10.1007/s41981-019-00046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00046-9

Keywords

Navigation