Skip to main content
Log in

Graphene oxide-catalyzed two-step continuous-flow conversion of aryl amine to unsymmetrical thioether

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A sustainable continuous-flow protocol for the conversion of aryl amine to unsymmetrical thioether is described. This technique is a two-step process involving graphene oxide (GO) catalyzed diazotization followed by the reaction with aryl/alkyl thiols. The continuous-flow conditions afford the desired thioethers in very good yields, effectively suppressing formation of possible disulfide, a common by-product in conventional process. The flow reaction is carried out under ambient conditions, applied to a variety of aryl amines and aryl/alkyl thiols and found to be scalable. The catalytic activity of the GO bed under continuous-flow conditions is found within standard time range and recyclable for ten consecutive runs without any loss of its performance.

Continuous-flow technique is applied in graphene oxide (GO) catalyzed conversion of aryl amine to unsymmetrical thioethers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

References

  1. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The hitchhiker’s guide to flow chemistry. Chem Rev 117:11796–11893

    Article  CAS  Google Scholar 

  2. Akwi FM, Watts P (2018) Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun 54:13894–13928

    Article  CAS  Google Scholar 

  3. Noël T, Su Y, Hessel V (2015) In: Noël T (ed) Organometallic flow chemistry. Germany, Springer

    Google Scholar 

  4. Oger N, Le Grognec E, Felpin F-X (2015) Handling diazonium salts in flow for organic and material chemistry. Org Chem Front 2:590–614

    Article  CAS  Google Scholar 

  5. Sahoo HR, Kralj JG, Jensen KF (2007) Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew Chem Int Ed 46:5704–5708

    Article  CAS  Google Scholar 

  6. Yoshida J-I, Nagaki A, Yamada D (2013) Continuous-flow synthesis. Drug Discov Today Technol 10:e53–e59

    Article  Google Scholar 

  7. Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T (2017) Safety assessment in development and operation of modular continuous-flow processes. React Chem Eng 2:258–280

    Article  CAS  Google Scholar 

  8. Dreyer DR, Jia HP, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed 49:6813–6816

    CAS  Google Scholar 

  9. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  10. Mohammadi O, Golestanzadeh M, Abdouss M (2017) Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: a review. New J Chem 41:11471–11497

    Article  CAS  Google Scholar 

  11. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212

    Article  CAS  Google Scholar 

  12. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43:5288–5301

    Article  CAS  Google Scholar 

  13. Bhattacharya S, Ghosh P, Basu B (2018) Graphene oxide (GO) catalyzed transamidation of aliphatic amides: an efficient metal-free procedure. Tetrahedron Lett 59:899–903

    Article  CAS  Google Scholar 

  14. Choudhury P, Roy B, Basu B (2017) Sustainable and site-selective C−H Sulfenylation of aromatic compounds with thiol using catalytic graphene oxide and NaI. Asian J Org Chem 6:1569–1574

    Article  CAS  Google Scholar 

  15. Jia HP, Dreyer DR, Bielawski CW (2011) Graphite oxide as an auto-tandem oxidation–hydration–aldol coupling catalyst. Adv Synth Catal 353:528–532

    Article  CAS  Google Scholar 

  16. Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  Google Scholar 

  17. Lee CF, Liu YC, Badsara SS (2014) Transition-metal-catalyzed C–S bond coupling reaction. Chem Asian J 9:706–722

    Article  CAS  Google Scholar 

  18. He L, Qiu G, Gao Y, Wu J (2014) Removal of amino groups from anilines through diazonium salt-based reactions. Org Biomol Chem 12:6965–6971

    Article  CAS  Google Scholar 

  19. Mo F, Dong G, Zhang Y, Wang J (2013) Recent applications of arene diazonium salts in organic synthesis. Org Biomol Chem 11:1582–1593

    Article  CAS  Google Scholar 

  20. Roglans A, Pla-Quintana A, Moreno-Manas M (2006) Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev 106:4622–4643

    Article  CAS  Google Scholar 

  21. Stadler O (1884) Zur Kenntniss der Merkaptane. Ber Dtsch Chem Ges 17:2075–2081

    Article  CAS  Google Scholar 

  22. Ziegler J (1890) Ueber eine Methode zur Darstellung aromatischer Sulfide von bestimmter Constitution und das Thioxanthon. Ber Dtsch Chem Ges 23:2469–2472

    Article  CAS  Google Scholar 

  23. Wang X, Cuny GD, Noël T (2013) A mild, one-pot Stadler–Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew Chem Int Ed 52:7860–7864

    Article  CAS  Google Scholar 

  24. Shieh Y-C, Du K, Basha RS, Xue Y-J, Shih B-H, Li L, Lee C-F (2019) Syntheses of Thioethers and selenide ethers from anilines. J Org Chem 84:6223–6231

    Article  CAS  Google Scholar 

  25. Hong B, Lee J, Lee A (2017) Visible-light-promoted synthesis of diaryl sulfides under air. Tetrahedron Lett 58:2809–2812

    Article  CAS  Google Scholar 

  26. Li Y, Pu J, Jiang X (2014) A highly efficient cu-catalyzed S-transfer reaction: from amine to sulfide. Org Lett 16:2692–2695

    Article  CAS  Google Scholar 

  27. Bottecchia C, Rubens M, Gunnoo SB, Hessel V, Madder A, Noël T (2017) Visible-light-mediated selective Arylation of cysteine in batch and flow. Angew Chem Int Ed 56:12702–12707

    Article  CAS  Google Scholar 

  28. Koziakov D, Majek M, von Wangelin AJ (2016) Metal-free radical thiolations mediated by very weak bases. Org Biomol Chem 14:11347–11352

    Article  CAS  Google Scholar 

  29. Mukherjee N, Chatterjee T, Ranu BC (2013) Reaction under ball-milling: solvent-, ligand-, and metal-free synthesis of unsymmetrical diaryl chalcogenides. J Org Chem 78:11110–11114

    Article  CAS  Google Scholar 

  30. Kundu D, Ahammed S, Ranu BC (2012) Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem 14:2024–2030

    Article  CAS  Google Scholar 

  31. Barbero M, Degani I, Diulgheroff N, Dughera S, Fochi R, Migliaccio M (2000) Alkyl-and arylthiodediazoniations of dry arenediazonium o-benzenedisulfonimides. Efficient and safe modifications of the Stadler and Ziegler reactions to prepare alkyl aryl and diaryl sulfides. J Org Chem 65:5600–5608

    Article  CAS  Google Scholar 

  32. Roy B, Ghosh S, Ghosh P, Basu B (2015) Graphene oxide (GO) or reduced graphene oxide (rGO): efficient catalysts for one-pot metal-free synthesis of quinoxalines from 2-nitroaniline. Tetrahedron Lett 56:6762–6767

    Article  CAS  Google Scholar 

  33. Bochare MD, Degani MS (2017) Polyethylene glycol nitrite (PEG-ONO) as a novel diazotizing agent. ACS Sustain Chem Eng 5:3716–3720

    Article  CAS  Google Scholar 

  34. M-j B, G-p L, Cai C (2015) Ascorbic acid promoted metal-free synthesis of aryl sulfides with anilines Nitrosated in situ by tert-butyl nitrite. Synlett 26:1841–1846

    Article  Google Scholar 

  35. Hari DP, Schroll P, König B (2012) Metal-free, visible-light-mediated direct C–H arylation of heteroarenes with aryl diazonium salts. J Am Chem Soc 134:2958–2961

    Article  CAS  Google Scholar 

  36. Voylov D, Saito T, Lokitz B, Uhrig D, Wang Y, Agapov A, Holt A, Bocharova V, Kisliuk A, Sokolov AP (2016) Graphene oxide as a radical initiator: free radical and controlled radical polymerization of sodium 4-vinylbenzenesulfonate with graphene oxide. ACS Macro Lett 5:199–202

    Article  CAS  Google Scholar 

  37. Qiu Y, Wang Z, Owens AC, Kulaots I, Chen Y, Kane AB, Hurt RH (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744–11755

    Article  CAS  Google Scholar 

  38. Dreyer DR, Jia H-P, Todd AD, Geng J, Bielawski CW (2011) Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org Biomol Chem 9:7292–7295

    Article  CAS  Google Scholar 

  39. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board (Grant No EMR/2015/000549), New Delhi, is gratefully acknowledged. PC thanks UGC, New Delhi, for Senior Research Fellowship under UGC–NET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Basu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

• Graphene oxide (GO) catalysis in flow reaction.

• A metal-free continuous-flow synthesis of thioethers.

• The catalytic bed of GO is recyclable for ten cycles.

Electronic supplementary material

ESM 1

(PDF 1899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, P., Basu, B. Graphene oxide-catalyzed two-step continuous-flow conversion of aryl amine to unsymmetrical thioether. J Flow Chem 10, 389–396 (2020). https://doi.org/10.1007/s41981-019-00048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00048-7

Keywords

Navigation