Skip to main content
Log in

Ethoxylation of p-Fluoronitrobenzene using phase-transfer catalysts under microflow conditions

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Nucleophilic aromatic substitution, one of the most common transformation methods for aromatic organic compounds, is often performed under biphasic conditions using a phase-transfer catalyst. Herein, we investigated the synthesis of 4-nitrophenetole from 4-fluoronitrobenzene in a continuous-flow microreactor, which accelerates mass transfer between the two phases. The reaction proceeded smoothly under slug flow conditions and a slight acceleration effect was observed under ambient pressure. By contrast, high temperature and pressure conditions gave the target compound in good yield within a shorter residence time.

Graphical Abstract Please provide caption for graphical abstract.Nucleophilic aromatic Substitution under microflow conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bunnett JF, Zahler RE (1951). Chem Rev 49:247–412

    Article  Google Scholar 

  2. Terrier F. Modern nucleophilic aromatic substitution, 2013, Wiley-VCH

  3. Chen B-C, Zhao R, Gove S, Wang B, Sundeen JF, Salvati ME, Barrish JC (2003). J Org Chem 68:10181

    Article  CAS  PubMed  Google Scholar 

  4. Schlosser M, Ruzziconi R (2010). Synthesis:2111

  5. Hayakawa I, Hiramitsu T, Tanaka Y (1984). Chem Pharm Bull 32:4907

    Article  CAS  PubMed  Google Scholar 

  6. Atarashi S, Yokohama S, Sakano K, Imamura M, Hayakawa I (1987). Chem. Pharm. Bull. 35:1896

    Article  CAS  PubMed  Google Scholar 

  7. Radl S, Bouzard D (1992). Heterocycles 34:2143

    Article  CAS  Google Scholar 

  8. Chung IS, Kim SY (2001). J Am Chem Soc 123:11071

    Article  CAS  PubMed  Google Scholar 

  9. Kim YJ, Chung IS, Kim SY (2003). Macromolecules 36:3809

    Article  CAS  Google Scholar 

  10. Lee MS, Kim SY (2005). Macromolecules 38:5844

    Article  CAS  Google Scholar 

  11. In I, Kim SY (2006). Polymer 47:4549

    Article  CAS  Google Scholar 

  12. Herbert CG, Bass RG, Watson KA, Connell JW (1996). Macromolecules 29:7709

    Article  CAS  Google Scholar 

  13. Hedrick JL, Twieg R (1992). Macromolecules 25:2021

    Article  CAS  Google Scholar 

  14. Roth I, Simon F, Bellmann C, Seifert A, Spange S (2006). Chem Mater 18:4730

    Article  CAS  Google Scholar 

  15. Seifert A, Spange S, Mûller H, Hesse S, Jâger C (2003). J Sol-Gel Sci Technol 26:77

    Article  CAS  Google Scholar 

  16. Acevedo O, Jorgensen WL (2004). Org Lett 6:2881–2884

    Article  CAS  PubMed  Google Scholar 

  17. Makosza M, Jagusztyn-Grochowska M, Ludwikow L (1974). Tetrahedron 30:3723

    Article  CAS  Google Scholar 

  18. Gisler M, Zollinger H (1981). Angew Chem Int Ed Engl 20:203

    Article  Google Scholar 

  19. Alemagna A, del Buttero P, Gorini C, Landini D, Licandro E, Maiorana S (1983). J. Org. Chem. 48:605

    Article  CAS  Google Scholar 

  20. Soula G (1985). J. Org. Chem. 50:3517

    Article  Google Scholar 

  21. Bunnett JF, Gisler M, Zollinger H (1982). Helv Chim, Acta 65:63

    Article  CAS  Google Scholar 

  22. Landini D, Montanari F, Rolla F (1983). J. Org. Chem. 48:604

    Article  CAS  Google Scholar 

  23. Yadav GD, Naik SS (2001). Catalyst Today 66:345–354

    Article  CAS  Google Scholar 

  24. Wang M-L, Rajendran V (2007). Ultrason Sonochem 14:368

    Article  CAS  PubMed  Google Scholar 

  25. Käsbauer, J., Wedemeyer K. U. S. Patent 4,782,190,1988-11-01

  26. Plutshack MB, Pieber B, Gilmore K, Seeberger PH (2017). Chem Rev 117:11796–11893

    Article  CAS  Google Scholar 

  27. Vaccaro L, Lanari D, Marrocchi A, Strappaveccia G (2014). Green Chem 16:3680–3704

    Article  CAS  Google Scholar 

  28. Newman SG, Jensen KF (2013). Green Chem 15:1456–1472

    Article  CAS  Google Scholar 

  29. Protasova LN, Bulut M, Ormerod D, Buekenhoudt A, Berton J, Stevens CV (2013). Org Process Res Dev 17:760

    Article  CAS  Google Scholar 

  30. Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007). Chem Rev 107:2300–2318

    Article  CAS  PubMed  Google Scholar 

  31. Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K (2016). J Photochem Photobiol C-Photochem Rev 29:107–147

    Article  CAS  Google Scholar 

  32. Fanelli F, Parisi G, Degennaro L, Luisi R (2017). Beilstein J Org Chem 13:520–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pieber B, Shalom M, Antonietti M, Seeberger H, Gilmore K (2018). Angew Chem Int Ed 57:9976–9979

    Article  CAS  Google Scholar 

  34. Reichart B, Kappe CO, Glasnov TN (2013). Synlett. 24:2393–2396

    Article  CAS  Google Scholar 

  35. Ji J, Zhao Y, Guo L, Liu B, Ji C, Yang P (2012). Lab Chip 12:1373–1377

    Article  CAS  PubMed  Google Scholar 

  36. Aljbour S, Yamada H, Tagawa T (2010). Top Catal 53:694–699

    Article  CAS  Google Scholar 

  37. Ueno M, Hisamoto H, Kitamori T, Kobayashi S (2003). Chem Commun:936–937

  38. Luduc AB, Jamison TF (2012). Org Process Res Dev 16:1082–1089

    Article  CAS  Google Scholar 

  39. Zhang Y, Born SC, Jensen KF (2014). Org Process Res Dev:18, 1476–1481

  40. Sinkovec E, Krajnc M (2011). Org Process Res Dev 15:817–823

    Article  CAS  Google Scholar 

  41. Huang D, Lu YC, Wang YJ, Yang L, Luo GS (2008). Ind Eng Chem Res 47:3870–3575

    Article  CAS  Google Scholar 

  42. Ahmed B, Barrow D, Wirth T (2006). Adv Syn Catal 348:1043–1048

    Article  CAS  Google Scholar 

  43. Aoki N, Tanigawa S, Mae K (2011). Chem Eng J 167:651–655

    Article  CAS  Google Scholar 

  44. Tamagawa O, Muto A (2011). Chem Eng J 167:700–704

    Article  CAS  Google Scholar 

  45. Nakano M, Nishiyama Y, Tanimoto H, Morimoto T, Kakiuchi K (2016). Org Process Res Dev 20:1626–1632

    Article  CAS  Google Scholar 

  46. Fernandez I, Frenking G, Uggerug EJ (2010). Org Chem 75:2971–2980

    Article  CAS  Google Scholar 

  47. Bartoli G, Todesco PE (1977). Acc Chem Res 10:125–132

    Article  CAS  Google Scholar 

  48. Ahmed B, Barrow D, Wirth T (2006). Adv Synth Catal 348:1043–1048

    Article  CAS  Google Scholar 

  49. Akbar MK, Plummer DA, Ghiaasiaan SM (2003). International Journal of Mutiphase Flow 29:855–865

    Article  CAS  Google Scholar 

  50. Kreutzer MT, Kaptejin F, Moulijin JAH, J J (2005). Chem Eng Sci 60:5895–5916

    Article  CAS  Google Scholar 

  51. Dessimoz A-L, Cavin L, Renken A, Kiwi-Minsker L (2008). Chem Eng Sci 63:4035

    Article  CAS  Google Scholar 

  52. Kashid MN, Agar DW (2007). Chem Eng J 131:1–13

    Article  CAS  Google Scholar 

  53. Antony R, Nandagopal G, Sreekumar N, Rangabhashiyam S, Selvaraju N (2014). Bull Chem React Eng Catal 9:207–233

    Article  CAS  Google Scholar 

  54. Reichrt B, Tekautz G, Kappe CG (2013). Org Process Res Dev 17:152–157

    Article  CAS  Google Scholar 

  55. Adeyemi A, Bergman J, Branalt J, Sävmarker J, Larhed M (2017). Org Process Res Dev 21:947–955

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Mori.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, H., Saito, A. & Nishiyama, Y. Ethoxylation of p-Fluoronitrobenzene using phase-transfer catalysts under microflow conditions. J Flow Chem 9, 115–121 (2019). https://doi.org/10.1007/s41981-019-00032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00032-1

Keywords

Navigation