Skip to main content
Log in

Synthesis, characterization, and antimicrobial efficacy of composite films from guar gum/sago starch/whey protein isolate loaded with carvacrol, citral and carvacrol-citral mixture

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this research was to formulate antimicrobial, composite films of guar gum, sago starch, and whey protein isolate for the prophylaxis of the bacterial gastroenteritis. The model antibacterial agents incorporated were essential oils, namely, carvacrol, citral and their combination. The films became darker and brownish in color due to the entrapment of the oils. The surface of the oil-entrapped films was more rough and coarse compared to the control film. Confocal micrographs affirmed the uniform distribution of the oil droplets within the biopolymeric network. The highest crystallite size and lowest lattice strain were estimated in the citral-containing film. FTIR analysis demonstrated that the incorporation of citral increased the proportion of the β-sheet structures of the whey protein isolate within the film matrix. However, the film formulation containing combination of carvacrol and citral demonstrated the lowest water vapor transmission rate (WVTR), highest tensile strength, Young’s modulus and work to failure. All the oil-containing films demonstrated good antibacterial potency against the model bacterial gastroenteritis causing bacteria, namely, Bacillus cereus and Escherichia coli. In gist, it can be concluded that the prepared antimicrobial films could be used for the prophylaxis of the bacterial gastroenteritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: a review. Eur Polym J. 2011;47:254–63. https://doi.org/10.1016/j.eurpolymj.2010.12.011.

    Article  CAS  Google Scholar 

  2. Haroun AA, Ahmed EF, Abd El-Ghaffar MA. Preparation and antimicrobial activity of poly (vinyl chloride)/gelatin/montmorillonite biocomposite films. J Mater Sci: Mater Med. 2011;22:2545–53. https://doi.org/10.1007/s10856-011-4437-x.

    Article  CAS  Google Scholar 

  3. Altiok D, Altiok E. Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci: Mater Med. 2010;21:2227–36. https://doi.org/10.1007/s10856-010-4065-x.

    Article  CAS  Google Scholar 

  4. Mudgil D, Barak S, Patel A, Shah N. Partially hydrolyzed guar gum as a potential prebiotic source. Int J Biol Macromol. 2018;112:207–10. https://doi.org/10.1016/j.ijbiomac.2018.01.164.

    Article  CAS  Google Scholar 

  5. Rao MS, Kanatt SR, Chawla SP, Sharma A. Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym. 2010;82:1243–7. https://doi.org/10.1016/j.carbpol.2010.06.058.

    Article  CAS  Google Scholar 

  6. Adawiyah DR, Sasaki T, Kohyama K. Characterization of arenga starch in comparison with sago starch. Carbohydr Polym. 2013;92:2306–13. https://doi.org/10.1016/j.carbpol.2012.12.014.

    Article  CAS  Google Scholar 

  7. Zainal Abiddin NF, Yusoff A, Ahmad N. Effect of octenylsuccinylation on physicochemical, thermal, morphological and stability of octenyl succinic anhydride (OSA) modified sago starch. Food Hydrocoll. 2018;75:138–46. https://doi.org/10.1016/j.foodhyd.2017.09.003.

    Article  CAS  Google Scholar 

  8. Oladzadabbasabadi N, Ebadi S, Mohammadi Nafchi A, Karim AA, Kiahosseini SR. Functional properties of dually modified sago starch/κ-carrageenan films: an alternative to gelatin in pharmaceutical capsules. Carbohydr Polym. 2017;160:43–51. https://doi.org/10.1016/j.carbpol.2016.12.042.

    Article  CAS  Google Scholar 

  9. Nafchi AM, Alias AK, Mahmud S, Robal M. Antimicrobials, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng. 2012;113:511–9. https://doi.org/10.1016/j.jfoodeng.2012.07.017.

    Article  CAS  Google Scholar 

  10. Marie Arockianathan P, Sekar S, Sankar S, Kumaran B, Sastry TP. Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym. 2012;90:717–24. https://doi.org/10.1016/j.carbpol.2012.06.003.

    Article  CAS  Google Scholar 

  11. Ghadetaj A, Almasi H, Mehryar L. Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packag Shelf Life. 2018;16:31–40. https://doi.org/10.1016/j.fpsl.2018.01.012.

    Article  Google Scholar 

  12. Jeon N-J, Kim Y-S, Kim E-K, Dong X, Lee J-W, Park J-S, et al. Inhibitory effect of carvacrol on melanin synthesis via suppression of tyrosinase expression. J Funct Foods. 2018;45:199–205. https://doi.org/10.1016/j.jff.2018.03.043.

    Article  CAS  Google Scholar 

  13. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94:223–53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

    Article  CAS  Google Scholar 

  14. Altan A, Aytac Z, Uyar T. Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocoll. 2018;81:48–59. https://doi.org/10.1016/j.foodhyd.2018.02.028.

    Article  CAS  Google Scholar 

  15. Tian H, Lu Z, Li D, Hu J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018;248:78–85. https://doi.org/10.1016/j.foodchem.2017.11.091.

    Article  CAS  Google Scholar 

  16. Marin L, Ailincai D, Mares M, Paslaru E, Cristea M, Nica V, et al. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr Polym. 2015;117:762–70. https://doi.org/10.1016/j.carbpol.2014.10.050.

    Article  CAS  Google Scholar 

  17. Dhumal CV, Ahmed J, Bandara N, Sarkar P. Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Pack Shelf. Food Pack Shelf Life. 2019;21:100380 https://doi.org/10.1016/j.fpsl.2019.100380.

    Article  Google Scholar 

  18. Latsios G, Petrogiannopoulos C, Hartzoulakis G, Kondili L, Bethimouti K, Zaharof A. Liver abscess due to Bacillus cereus: a case report. Clin Microbiol Infect. 2003;9:1234–7. https://doi.org/10.1111/j.1469-0691.2003.00795.x.

    Article  CAS  Google Scholar 

  19. Tomiyama J, Hasegawa Y, Nagasawa T, Abe T, Horiguchi H, Ogata T. Bacillus cereus septicemia associated with rhabdomyolysis and myoglobinuric renal failure. Jpn J Med. 1989;28:247–50. https://doi.org/10.2169/internalmedicine1962.28.247.

    Article  CAS  Google Scholar 

  20. Cramer JP. Chapter 17—Enterohemorrhagic escherichia coli (EHEC): hemorrhagic colitis and hemolytic uremic syndrome (HUS). In: Ergönül Ö, Can F, Madoff L, Akova M, eds. Emerging infectious diseases. Amsterdam: Academic Press; 2014. p. 213–27.

    Chapter  Google Scholar 

  21. Prameela K, Murali Mohan C, Ramakrishna C. Chapter 1—Biopolymers for food design: consumer-friendly natural ingredients. In: Grumezescu AM, Holban AM, editors. Biopolymers for food design. New York, USA: Academic Press; 2018. p. 1–32.

    Google Scholar 

  22. Paul SR, Qureshi D, Yogalakshmi Y, Nayak SK, Singh VK, Syed I, et al. Development of bigels based on stearic acid–rice bran oil oleogels and tamarind gum hydrogels for controlled delivery applications. J Surfactants Deterg. 2018;21:17–29. https://doi.org/10.1002/jsde.12022.

    Article  CAS  Google Scholar 

  23. Saberi B, Thakur R, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ, et al. Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind Crop Prod. 2016;86:342–52. https://doi.org/10.1016/j.indcrop.2016.04.015.

    Article  CAS  Google Scholar 

  24. Liu R, Cong X, Song Y, Wu T, Zhang M. Edible gum–phenolic–lipid incorporated gluten films for food packaging. J Food Sci 2018;83:1622–30. https://doi.org/10.1111/1750-3841.14151.

    Article  CAS  Google Scholar 

  25. Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O. Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015;47:168–77. https://doi.org/10.1016/j.foodhyd.2015.01.032.

    Article  CAS  Google Scholar 

  26. Pranoto Y, Rakshit SK, Salokhe VM. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol. 2005;38:859–65. https://doi.org/10.1016/j.lwt.2004.09.014.

    Article  CAS  Google Scholar 

  27. Moghimi R, Aliahmadi A, Rafati H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr Polym. 2017;175:241–8. https://doi.org/10.1016/j.carbpol.2017.07.086.

    Article  CAS  Google Scholar 

  28. Dhumal CV, Pal K, Sarkar P. Characterization of tri-phasic edible films from chitosan, Guar Gum, and Whey protein isolate loaded with plant-based antimicrobial compounds. Polym Plast Technol. 2018:1–15. https://doi.org/10.1080/03602559.2018.1466179.

    Article  Google Scholar 

  29. Giteru SG, Coorey R, Bertolatti D, Watkin E, Johnson S, Fang Z. Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films. Food Chem 2015;168:341–7. https://doi.org/10.1016/j.foodchem.2014.07.077.

    Article  CAS  Google Scholar 

  30. Jamróz E, Juszczak L, Kucharek M. Development of starch-furcellaran-gelatin films containing tea tree essential oil. J Appl Polym Sci. 2018;46754. https://doi.org/10.1002/app.46754.

    Article  Google Scholar 

  31. Jamróz E, Juszczak L, Kucharek M. Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil. Int J Biol Macromol. 2018;114:1094–101. https://doi.org/10.1016/j.ijbiomac.2018.04.014.

    Article  CAS  Google Scholar 

  32. Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, et al. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr Polym. 2013;98:1117–26. https://doi.org/10.1016/j.carbpol.2013.07.026.

    Article  CAS  Google Scholar 

  33. Kavoosi G, Dadfar SMM, Purfard AM. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J Food Sci. 2013;78:E244–50. https://doi.org/10.1111/1750-3841.12015.

    Article  CAS  Google Scholar 

  34. Atef M, Rezaei M, Behrooz R. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll. 2015;45:150–7. https://doi.org/10.1016/j.foodhyd.2014.09.037.

    Article  CAS  Google Scholar 

  35. Hashemi SMB, Mousavi Khaneghah A. Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog Org Coat. 2017;110:35–41. https://doi.org/10.1016/j.porgcoat.2017.04.041.

    Article  CAS  Google Scholar 

  36. Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010;122:161–6. https://doi.org/10.1016/j.foodchem.2010.02.033.

    Article  CAS  Google Scholar 

  37. Pereda M, Aranguren MI, Marcovich NE. Caseinate films modified with tung oil. Food Hydrocoll. 2010;24:800–8. https://doi.org/10.1016/j.foodhyd.2010.04.007.

    Article  CAS  Google Scholar 

  38. Bahram S, Rezaei M, Soltani M, Kamali A, Ojagh SM, Abdollahi M. Whey protein concentrate edible film activated with cinnamon essential oil. J Food Process Preserv. 2014;38:1251–8. https://doi.org/10.1111/jfpp.12086.

    Article  CAS  Google Scholar 

  39. Jiménez A, Fabra MJ, Talens P, Chiralt A. Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocoll. 2012;26:302–10. https://doi.org/10.1016/j.foodhyd.2011.06.009.

    Article  CAS  Google Scholar 

  40. Mudgil D, Barak S, Khatkar BS. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromo.l 2012;50:1035–9. https://doi.org/10.1016/j.ijbiomac.2012.02.031.

    Article  CAS  Google Scholar 

  41. Mandal A, Sekar S, Chandrasekaran N, Mukherjee A, Sastry TP. Vibrational spectroscopic investigation on interaction of sago starch capped silver nanoparticles with collagen: a comparative physicochemical study using FT-IR and FT-Raman techniques. Rsc Adv. 2015;5:15763–71. https://doi.org/10.1039/C4RA09694K.

    Article  CAS  Google Scholar 

  42. Hundre SY, Karthik P, Anandharamakrishnan C. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chem. 2015;174:16–24. https://doi.org/10.1016/j.foodchem.2014.11.016.

    Article  CAS  Google Scholar 

  43. Arrieta MP, Peltzer MA. Garrigós MdC, Jiménez A. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J Food Eng. 2013;114:486–94. https://doi.org/10.1016/j.jfoodeng.2012.09.002.

    Article  CAS  Google Scholar 

  44. Zhu G, Feng N, Xiao Z, Zhou R, Niu Y. Production and pyrolysis characteristics of citral–monochlorotriazinyl-β-cyclodextrin inclusion complex. J Therm Anal Calorim. 2015;120:1811–7. https://doi.org/10.1007/s10973-015-4498-z.

    Article  CAS  Google Scholar 

  45. Yadav I, Rathnam VSS, Yogalakshmi Y, Chakraborty S, Banerjee I, Anis A, et al. Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films. Carbohydr Polym. 2017;165:159–68. https://doi.org/10.1016/j.carbpol.2017.02.026.

    Article  CAS  Google Scholar 

  46. Al-Hanish A, Stanic-Vucinic D, Mihailovic J, Prodic I, Minic S, Stojadinovic M, et al. Noncovalent interactions of bovine α-lactalbumin with green tea polyphenol, epigalocatechin-3-gallate. Food Hydrocoll. 2016;61:241–50. https://doi.org/10.1016/j.foodhyd.2016.05.012.

    Article  CAS  Google Scholar 

  47. Pelissari FM, Grossmann MVE, Yamashita F, Pineda EAG. Antimicrobial, mechanical, and barrier properties of Cassava Starch−Chitosan films incorporated with oregano essential oil. J Agric Food Chem. 2009;57:7499–504. https://doi.org/10.1021/jf9002363.

    Article  CAS  Google Scholar 

  48. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, et al. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol. 2013;52:116–24. https://doi.org/10.1016/j.ijbiomac.2012.08.026.

    Article  CAS  Google Scholar 

  49. Moradi M, Tajik H, Razavi Rohani SM, Oromiehie AR. Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage. J Sci Food Agric. 2011;91:2850–7. https://doi.org/10.1002/jsfa.4531.

    Article  CAS  Google Scholar 

  50. Shen XL, Wu JM, Chen Y, Zhao G. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll. 2010;24:285–90. https://doi.org/10.1016/j.foodhyd.2009.10.003.

    Article  CAS  Google Scholar 

  51. Shahbazi Y. The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol. 2017;99:746–53. https://doi.org/10.1016/j.ijbiomac.2017.03.065.

    Article  CAS  Google Scholar 

  52. Noshirvani N, Ghanbarzadeh B, Gardrat C, Rezaei MR, Hashemi M, Le Coz C, et al. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll. 2017;70:36–45. https://doi.org/10.1016/j.foodhyd.2017.03.015.

    Article  CAS  Google Scholar 

  53. Pereda M, Amica G, Marcovich NE. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym. 2012;87:1318–25. https://doi.org/10.1016/j.carbpol.2011.09.019.

    Article  CAS  Google Scholar 

  54. Talón E, Trifkovic KT, Nedovic VA, Bugarski BM, Vargas M, Chiralt A, et al. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym. 2017;157:1153–61. https://doi.org/10.1016/j.carbpol.2016.10.080.

    Article  CAS  Google Scholar 

  55. Araújo GKP, Souza SJ, Silva MV, Yamashita F, Gonçalves OH, Leimann FV, et al. Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int J Food Sci Technol. 2015;50:2080–7. https://doi.org/10.1111/ijfs.12869.

    Article  CAS  Google Scholar 

  56. Tang W, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon. 2003;41:2779–85. https://doi.org/10.1016/S0008-6223(03)00387-7.

    Article  CAS  Google Scholar 

  57. Ryu V, McClements DJ, Corradini MG, Yang JS, McLandsborough L. Natural antimicrobial delivery systems: Formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions. Food Hydrocoll. 2018;82:442–50. https://doi.org/10.1016/j.foodhyd.2018.04.017.

    Article  CAS  Google Scholar 

  58. Sánchez-Ortega I, García-Almendárez BE, Santos-López EM, Reyes-González LR, Regalado C. Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocoll. 2016;52:906–13. https://doi.org/10.1016/j.foodhyd.2015.09.004.

    Article  CAS  Google Scholar 

  59. Kim J-H, Hong W-s OhS-W. Effect of layer-by-layer antimicrobial edible coating of alginate and chitosan with grapefruit seed extract for shelf-life extension of shrimp (Litopenaeus vannamei) stored at 4 °C. Int J Biol Macromol. 2018;120:1468–73. https://doi.org/10.1016/j.ijbiomac.2018.09.160.

    Article  CAS  Google Scholar 

  60. Boyacı D, Iorio G, Sozbilen GS, Alkan D, Trabattoni S, Pucillo F, et al. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: test of coatings on inoculated melons. Food Pack Shelf Life. 2019;20:100316. https://doi.org/10.1016/j.fpsl.2019.100316.

    Article  Google Scholar 

  61. Arnon-Rips H, Porat R, Poverenov E. Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chem. 2019;277:205–12. https://doi.org/10.1016/j.foodchem.2018.10.117.

    Article  CAS  Google Scholar 

  62. Martiñon ME, Moreira RG, Castell-Perez ME, Gomes C. Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4 °C. LWT Food Sci Technol. 2014;56:341–50. https://doi.org/10.1016/j.lwt.2013.11.043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunal Pal or Preetam Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilas Dhumal, C., Pal, K. & Sarkar, P. Synthesis, characterization, and antimicrobial efficacy of composite films from guar gum/sago starch/whey protein isolate loaded with carvacrol, citral and carvacrol-citral mixture. J Mater Sci: Mater Med 30, 117 (2019). https://doi.org/10.1007/s10856-019-6317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6317-8

Navigation