Skip to main content

Advertisement

Log in

Controlling the recombination of electron-hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

ZnO nanorods were prepared through a sol-gel process by adding various amounts of water at low temperature and atmospheric pressure conditions for application as a photocatalyst. The 1-D ZnO nanostructures can overcome fast recombination of photogenerated electrons and holes that inhibits photocatalytic efficiency. X-ray diffractometer and transmission electron microscopy measurements confirmed that the (002)/(100) intensity ratio increased from 0.83 to 1.34 and the morphology of the ZnO nanoparticles was changed from a spherical shape to nanorods with the addition of water. UV-vis spectroscopy showed a red shift from 360 nm to 371 nm, which indicates a decrease of the band gap energy. PL measurements of the ZnO nanorods showed a 103 times improvement of the NBE/DLE intensity ratio compared to the ZnO nanospheres. When the photocatalytic efficiency of the ZnO nanoparticles was estimated for the degradation of methylene blue dye under irradiation of UV light, the photocatalytic kinetic constant increased from 0.067 min−1 to 0.481 min−1. As a result, longer ZnO nanorods showed better photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, R. Chen, Y. Xia, G. Wang, H. Zhao, L. Xiang and S. Komarneni, Ceram. Int., 43, 1870 (2017).

    Article  CAS  Google Scholar 

  2. J. Mishra, M. Jha, N. Kaur and A. K. Ganguli, Mater. Res. Bull., 102, 311 (2018).

    Article  CAS  Google Scholar 

  3. S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115, 13211 (2011).

    Article  CAS  Google Scholar 

  4. C. J. Chang, M. H. Hsu, Y. C. Weng, C. Y. Tsay and C. K. Lin, Thin Solid Films, 528, 167 (2013).

    Article  CAS  Google Scholar 

  5. T. Di, B. Zhu, J. Zhang, B. Cheng and J. Yu, Appl. Surf. Sci., 389, 775 (2016).

    Article  CAS  Google Scholar 

  6. L. Mao, H. Liu, S. Liu, Q. Ba, H. Wang, L. Gao, X. Li, C. Huang and W. Chen, Mater. Res. Bull., 93, 9 (2017).

    Article  CAS  Google Scholar 

  7. M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman and W. M. A. W. Daud, J. Environ. Manage., 198, 78 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. R. Singh, K. Verma, A. Patyal, I. Sharma, P. B. Barman and D. Sharma, Solid State Sci., 89, 1 (2019).

    Article  CAS  Google Scholar 

  9. E. Hong, T. Choi and J. H. Kim, Korean J. Chem. Eng., 32, 424 (2015).

    Article  CAS  Google Scholar 

  10. B. Weng, M. Q. Yang, N. Zhang and Y. J. Xu, J. Mater. Chem. A, 2, 9380 (2014).

    Article  CAS  Google Scholar 

  11. R. Raji and K. G. Gopchandran, J. Phys. Chem. Solids, 113, 39 (2018).

    Article  CAS  Google Scholar 

  12. N. Huang, J. Shu, Z. Wang, M. Chen, C. Ren and W. Zhang, J. Alloys. Compd., 648, 919 (2015).

    Article  CAS  Google Scholar 

  13. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang and R. Liu, Sci. Rep., 4, 4596 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Z. Liu, Z. G. Zhao and M. Miyauchi, J. Phys. Chem. C, 113, 17132 (2009).

    CAS  Google Scholar 

  15. S. Kato, Y. Hirano, M. Iwata, T. Sano, K. Takeuchi and S. Matsuzawa, Appl. Catal. B-Environ., 57, 109 (2005).

    Article  CAS  Google Scholar 

  16. J. Zhang, L. Sun, H. Pan, C. Liao and C. Yan, New J. Chem., 26, 33 (2002).

    Article  CAS  Google Scholar 

  17. P. X. Gao and Z. L. Wang J. Phys. Chem. B, 108, 7534 (2004).

    Article  CAS  Google Scholar 

  18. J. J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002).

    Article  CAS  Google Scholar 

  19. R. Liu, A. A. Vertegel, E. W. Bohannan, T. A. Sorenson and J. A. Switzer, Chem. Mater., 13, 508 (2001).

    Article  CAS  Google Scholar 

  20. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren and P. H. Fleming, Appl. Phys. Lett., 81, 3046 (2002).

    Article  CAS  Google Scholar 

  21. H. Cheng-Liang, C. Shoou-Jinn, H. Hui-Chuan, L. Yan-Ru, H. Chorng-Jye, T. Yung-Kuan and I. Chen, IEEE T. Nanotechnology, 4, 649 (2005).

    Article  Google Scholar 

  22. S. Yan, L. Wan, Z. Li and Z. Zou, Chem. Commun., 47, 5632 (2011).

    Article  CAS  Google Scholar 

  23. Q. Jijun, L. Xiaomin, H. Weizhen, S. J. Park, H. K. Kim, Y. H. Han, J. H. Lee and Y. D. Kim, Nanotechnology, 20, 155603 (2009).

    Article  CAS  Google Scholar 

  24. P. Banerjee, S. Chakrabarti, S. Maitra and B. K. Dutta, Ultrason. Sonochem., 19, 85 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Jeong, J. Y. Kang, I. Kim, H. Jeong, J. K. Park, J. H. Park and J. C. Jung, Korean J. Chem. Eng., 33, 114 (2016).

    Article  CAS  Google Scholar 

  26. B. Cheng, W. Shi, J. M. Russell-Tanner, L. Zhang and E. T. Samulski, Inorg. Chem., 45, 1208 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. H. J. Jung, S. Lee, H. C. Choi and M. Y. Choi, Solid State Sci., 21, 26 (2013).

    Article  CAS  Google Scholar 

  28. H. Wang, C. Xie and D. Zeng, J. Cryst. Growth, 277, 372 (2005).

    Article  CAS  Google Scholar 

  29. Y. Chen, H. Zhao, B. Liu and H. Yang, Appl. Catal. B-Environ., 163, 189 (2015).

    Article  CAS  Google Scholar 

  30. C. K. Frederik, T. Yi, T. Ralf and W. A. Jens, Nanotechnology, 19, 424013 (2008).

    Article  CAS  Google Scholar 

  31. J. Bouclé, H. J. Snaith and N. C. Greenham, J. Phys. Chem. C, 114, 3664 (2010).

    Article  CAS  Google Scholar 

  32. J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee and S. T. Lee, Chem. Mater., 14, 1216 (2002).

    Article  CAS  Google Scholar 

  33. S. Kundu, S. Sain, B. Satpati, S. R. Bhattacharyya and S. K. Pradhan, RSC Adv., 5, 23101 (2015).

    Article  CAS  Google Scholar 

  34. A. McLaren, T. Valdes-Solis, G. Li and S. C. Tsang, J. Am. Chem. Soc., 131, 12540 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. H. Çolak, E. Karaköse and G. Kartopu, J. Mater. Sci-Mater. El., 29, 11964 (2018).

    Article  CAS  Google Scholar 

  36. L. Yanhong, W. Dejun, Z. Qidong, Y. Min and Z. Qinglin, J. Phys. Chem. B, 108, 3202 (2004).

    Article  CAS  Google Scholar 

  37. Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna and G. W. Ho, Nanotechnology, 20, 045604 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. M. S. Mohajerani, A. Lak and A. Simchi, J. Alloys. Compd., 485, 616 (2009).

    Article  CAS  Google Scholar 

  39. T. M. Shang, J. H. Sun, Q. F. Zhou and M. Y. Guan, Cryst. Res. Technol., 42, 1002 (2007).

    Article  CAS  Google Scholar 

  40. L. Yang, P. W. May, L. Yin and T. B. Scott, Nanotechnology, 18, 215602 (2007).

    Article  CAS  Google Scholar 

  41. J. Sun, J. Bian, H. Liang, J. Zhao, L. Hu, Z. Zhao, W. Liu and G. Du, Appl. Surf. Sci., 253, 5161 (2007).

    Article  CAS  Google Scholar 

  42. Y. Liu, X. Yan, Z. Kang, Y. Li, Y. Shen, Y. Sun, L. Wang and Y. Zhang, Sci. Rep., 6, 29907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. K. Choi, T. Kang and S. G. Oh, Mater. Lett., 75, 240 (2012).

    Article  CAS  Google Scholar 

  44. Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun and D. Yu, Appl. Surf. Sci., 256, 1698 (2010).

    Article  CAS  Google Scholar 

  45. J. Gupta, K. C. Barick and D. Bahadur, J. Alloys. Compd., 509, 6725 (2011).

    Article  CAS  Google Scholar 

  46. J. Rouhi, M. Alimanesh, R. Dalvand, C. H. R. Ooi, S. Mahmud and M. R. Mahmood, Ceram. Int., 40, 11193 (2014).

    Article  CAS  Google Scholar 

  47. S. A. Vanalakar, S. S. Mali, M. P. Suryawanshi, N. L. Tarwal, P. R. Jadhav, G. L. Agawane, K. V. Gurav, A. S. Kamble, S. W. Shin, A. V. Moholkar, J. Y. Kim, J. H. Kim and P. S. Patil, Opt. Mater., 37, 766 (2014).

    Article  CAS  Google Scholar 

  48. C. B. Ong, L. Y. Ng and A. W. Mohammad, Renew. Sustain. Energy Rev., 81, 536 (2018).

    Article  CAS  Google Scholar 

  49. G. He, B. Huang, Z. Lin, W. Yang, Q. He and L. Li, Crystals, 8, 152 (2018).

    Article  CAS  Google Scholar 

  50. X. Chen, Z. Wu, D. Liu and Z. Gao, Nanoscale Res. Lett., 12, 143 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu and S. P. Sun, J. Hazard. Mater., 179, 438 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, Inorg. Chem., 46, 6980 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. A. Leelavathi, G. Madras and N. Ravishankar, Phys. Chem. Chem. Phys., 15, 10795 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A 03013422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Geun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y.S., Oh, SG. Controlling the recombination of electron-hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties. Korean J. Chem. Eng. 36, 2118–2124 (2019). https://doi.org/10.1007/s11814-019-0401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0401-0

Keywords

Navigation