Skip to main content
Log in

Oxygen transfer capacity of the copper component introduced into the defected-MgMnAlO4 spinel structure in CH4-CO2/air redox cycles

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Oxygen carrier particles were fabricated by using defected-MgMnAlO4 as a support particle with crystal defects, and by the Cu2+ ions with a higher reduction potential substituted with Mg2+ ions, in order to use methane-chemical looping combustion (CH4-CLC) reaction. The oxygen transfer capacities of the particles were compared when conducting redox reactions under H2/air or CH4-CO2/air systems. As a result, the oxygen transfer capacity increased as the amount of Cu ions added increased. In particular, in the CH4-CO2/air system, Cu0.75Mg0.25MnAlO4 particle showed an excellent oxygen transfer capacity of 7.62%. The XPS result confirms that the Cu2+ (also partially Mn3+ ions) in the Cu0.75Mg0.25MnAlO4 particle oxidize CH4, and then they are restored to their original state by receiving oxygen from the Al3+ and Mg2+ ions in the support. The oxygen vacancies in the lattice due to the Cu2+ could easily induce oxygen delivery, and the reversible oxygen loss recovery by re-oxidation in the air reactor could be achieved. This is the most important factor in increasing oxygen transfer capacity. Ultimately, in this study, oxygen defects in the crystal lattices induced during the reaction seem to have a positive effect on the CH4 combustion reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sun, L. Wang, X. Liu, B. Jin and D. Wang, Processes, 6, 1 (2018).

    Article  CAS  Google Scholar 

  2. X. Cheng, K. Li, H. Wang, X. Zhu, Y. Wei, Z. Li, M. Zheng and D. Tian, Chem. Eng. J., 328, 382 (2017).

    Article  CAS  Google Scholar 

  3. K. Marx, O. Bertsch, T. Pröll and H. Hofbauer, Energy Procedia, 37, 635 (2013).

    Article  CAS  Google Scholar 

  4. R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro and S. Rossini, J. Mol. Catal. A-Chem., 204, 637 (2003).

    Article  CAS  Google Scholar 

  5. M. M. Hossain and H. I. Lasa, AIChE. J., 53, 1817 (2007).

    Article  CAS  Google Scholar 

  6. S. Kang, Y. Im, K. S. Park, T. W. Cho, J. Jeon, K. I. Chung and M. Kang, Electrochim. Acta, 209, 623 (2016).

    Article  CAS  Google Scholar 

  7. B. S. Kwak, N. K. Park, J. I. Baek, H. J. Ryu and M. Kang, Korean J. Chem. Eng., 37, 1936 (2017).

    Article  CAS  Google Scholar 

  8. B. S. Kwak, N. K. Park, H. J. Ryu, J. I. Baek and M. Kang, Appl. Therm. Eng., 128, 1273 (2018).

    Article  CAS  Google Scholar 

  9. C. Linderholm, A. Abad, T. Mattisson and A. Lyngfelt, Int. J. Greenh. Gas Con., 2, 520 (2008).

    Article  CAS  Google Scholar 

  10. A. R. Puigdollers, P. Schlexer, S. Tosoni and G. Pacchioni, ACS Catal., 7, 6493 (2017).

    Article  CAS  Google Scholar 

  11. B. S. Kwak, N. K. Park, S. O. Ryu, J. I. Baek, H. J. Ryu and M. Kang, Chem. Eng. J., 309, 617 (2017).

    Article  CAS  Google Scholar 

  12. N. Son, J. Y. Do, N. K. Park, S. O. Ryu, B. S. Kwak, J. I. Baek, U. S. Kim, H. J. Ryu, D. Lee and M. Kang, Int. J. Energy Res., 42, 3943 (2018).

    Article  CAS  Google Scholar 

  13. J. Y. Do, J. H. Lee N. K. Park, T. J. Lee, S. T. Lee and M. Kang, Chem. Eng. J., 334, 1668 (2018).

    Article  CAS  Google Scholar 

  14. J. Y. Do, N. Son, N. K. Park, B. S. Kwak, J. I. Baek, H. J. Ryu and M. Kang, Appl. Energy, 219, 138 (2018).

    Article  CAS  Google Scholar 

  15. H. J. Ryu, S. Y. Lee, Y. C. Park and M. H. Park, World Acad. Sci. Eng. Technol., 28, 169 (2007).

    Google Scholar 

  16. Y. Zhu, X. Liu S. Jin, H. Chen, W. Lee, M. Liu and Y. Chen, J. Mater. Chem. A., 7, 5875 (2019).

    Article  CAS  Google Scholar 

  17. K. Singh, F. Razmiooei and J. S. Yu, J. Mater. Chem. A, 5, 20095 (2017).

    Article  CAS  Google Scholar 

  18. N. A. Gribchenkova, K. G. Snorchkov, A. G. Kolmakov and A. S. Alikhanyan, Inorg. Mater., 54, 575 (2018).

    Article  CAS  Google Scholar 

  19. K. Rajar Soomro, Z. H. Ibupoto and B. Sirajuddin, Int. J. Food Prop., 20, 1359 (2017).

    Article  CAS  Google Scholar 

  20. L. Schreyeck, A. Wlosik and H. Fuzellier, J. Mater. Chem., 11, 483 (2001).

    Article  CAS  Google Scholar 

  21. F. G. Labiano, L. F. Diego, J. Adánez, A. Abad and P. Gayán, Chem. Eng. Sci., 60, 851 (2005).

    Article  CAS  Google Scholar 

  22. M. Kogler, E. M. Köck, T. Bielz, K. Pfaller, B. Klötzer, D. Schmidmair, L. Perfler and S. Penner, J. Phys. Chem. C., 118, 8435 (2014).

    Article  CAS  Google Scholar 

  23. Z. Sihaib, F. Puleo, G. Pantaleo, V. L. Parola, J.L. Valverde, S. Gil, L. F. Liotta and A. Giroir-Fendler, Catalysts, 9, 226 (2019).

    Article  CAS  Google Scholar 

  24. L. Qiu, Y. Wang, D. Pang, F. Ouyang, C. Zhang and G. Cao, Catalysts, 6, 9 (2016).

    Article  CAS  Google Scholar 

  25. C. Huo, J. Ouyang and H. Yang, Sci. Rep., 4, 3682 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. W. Qin, C. Lin, J. Wang, X. Xiao, C. Dong and L. Wei, Energies, 9, 1 (2016).

    Google Scholar 

  27. K. M. Kim, B. S. Kwak, N. K. Park, T. J. Lee, S. T. Lee and M. Kang, J. Ind. Eng. Chem., 46, 324 (2017).

    Article  CAS  Google Scholar 

  28. I. Qian and Z. Yan, J. Nat. Gas Chem., 11, 151 (2002).

    CAS  Google Scholar 

  29. S. Sun, D. Mao, J. Yu, Z. Yang, G. Lu and Z. Ma, Catal. Sci. Technol., 5, 3166 (2015).

    Article  CAS  Google Scholar 

  30. J. R. Scheffe, A. H. McDaniel, M. D. Allendorf and A. W. Weimer, Energy Environ. Sci., 6, 963 (2013).

    Article  CAS  Google Scholar 

  31. J. Adánez, L. de Diego, F. García-Labiano, P. Gayán, A. Abad and J.M. Palacios, Energy Fuels, 18, 371 (2004).

    Article  CAS  Google Scholar 

  32. P. Cho, T. Mattisson and A. Lyngfelt, Fuel, 83, 1215 (2004).

    Article  CAS  Google Scholar 

  33. J. G. Wang, C. Zhang, D. Jin, K. Xie and B. Wei, J. Mater. Chem. A., 3, 13699 (2015).

    Article  CAS  Google Scholar 

  34. P. H. Zhou, L. J. Deng, J. L. Xie, D. F. Liang, L. Chen and X. Q. Zhao, J. Magn. Magn. Mater., 292, 325 (2005).

    Article  CAS  Google Scholar 

  35. F. G. Labiano, L. F. Diego, J. Adánez, A. Abad and P. Gayán, Chem. Eng. Sci., 60, 851 (2005).

    Article  CAS  Google Scholar 

  36. S. Poulston, P. M. Parlett, P. Stone and M. Bowker, Surf. Interface Anal., 24, 811 (1996).

    Article  CAS  Google Scholar 

  37. J. P. Espinós, J. Morales, A. Barranco, A. Caballero, J. P. Holgado and A. R. González-Elipe, J. Phys. Chem. B., 106, 6921 (2002).

    Article  CAS  Google Scholar 

  38. J. Y. Zhang, Z. L. Wu, S. G. Wang, C. J. Zhao and G. Yang, Appl. Phys. Lett., 102, 102404 (2013).

    Article  CAS  Google Scholar 

  39. Y. Luo, X. Wang, W. Guo and M. Rohwerder, J. Electrochem. Soc., 162, 294 (2015).

    Article  CAS  Google Scholar 

  40. X. Li, M. Xin, S. Guo, T. Cai, D. Du, W. Xing, L. Zhao, W. Guo, Q. Xue and Z. Yan, Electrochim. Acta, 253, 302 (2017).

    Article  CAS  Google Scholar 

  41. E. Ksepko, P. Badinski and L. Nalbandian, Appl. Energy, 190, 1258 (2017).

    Article  CAS  Google Scholar 

  42. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S. C. I. Wang, Y. Shen and Y. Tong, Sci. Rep., 3, 1021 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Energy Efficiency & Resources Programs of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (20152010201840).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Yeon Do or Misook Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, N., Do, J.Y., Park, NK. et al. Oxygen transfer capacity of the copper component introduced into the defected-MgMnAlO4 spinel structure in CH4-CO2/air redox cycles. Korean J. Chem. Eng. 36, 1971–1982 (2019). https://doi.org/10.1007/s11814-019-0407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0407-7

Keywords

Navigation