Skip to main content
Log in

Hydrodynamic modeling of the spiral-wound membrane module including the membrane curvature: reverse osmosis case study

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study presents an integrated analytical model for the hydrodynamic behavior of the spiral-wound membrane element considering the curvature of the flow feed and permeate channels. The new model introduces a set of closed-form expressions for the output parameters of the permeate flow rate, fluid recovery fraction, and the permeation flux, which can be a necessary tool for optimization and evaluation of the parameters involved in the problem. Accordingly, the results were set forth for a reverse osmosis water treatment SWM element. The difference in the output parameters for the solutions with flat and curved membranes was investigated, and the consequences of the common assumption of the flat-sheet membrane were examined mathematically. It was found that neglecting the membrane curvature implements a significant impact/error on the prediction of the permeate channel pressure and membrane width with maximum permeation rate, whereas its impacts on feed channel pressure and output parameters are insignificant, especially for the considered reverse osmosis case study. Also, the curvature effect on the solution can be magnified by three parameters of the membrane width: permeate channel permeability, and membrane resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A, B, C:

dimensionless parameters defined in the model

D:

diameter of the feed spacer filament [m]

F:

fluid recovery fraction

f1, f2 :

coefficients in pressure drop constitutive law (feed channel)

k:

permeability [m2]

k1 :

permeate channel permeability parallel to the membrane [m2]

k2 :

permeate channel permeability perpendicular to the membrane [m2]

L:

length of the feed spacer filament in a unit cell [m2]

Lpr :

permeate channel height [m]

Lfr :

feed channel height [m]

Lx :

membrane sheet length [m]

L y :

membrane sheet width [m]

LMH:

permeation flux [L/(m2 h)]

P:

permeate channel pressure [Pa]

p:

feed channel pressure [Pa]

Q:

permeate flow rate [L/h]

R:

curvature radius [m]

Rm :

membrane resistance [m−1]

Re:

Reynolds number (Re=ρUD/μ)

U:

velocity in feed channel [m/s]

Uw :

permeation velocity or permeation flux [m/s]

Θ :

angle corresponds to the membrane width [Deg]

η :

dimensionless curvature radius

ψ :

percentage of difference [%]

α :

dimensionless parameter defined in the solution

β :

mesh angle (between the filaments of feed spacer) [Deg]

ΔP:

pressure drop [Pa]

μ :

fluid viscosity [Pa·s]

ρ :

fluid density [kg/m3]

c:

related to selected case study value

d:

dimensionless

in:

inlet

out:

outlet

i:

inner

o:

outer

f:

related to feed channel

p:

related to permeate channel

r:

index notation for cylindrical coordinates

θ :

index notation for cylindrical coordinates

z:

index notation for cylindrical coordinates

q:

quantity (main output parameter)

References

  1. S. Homaeigohar and M. Elbahri, NPG Asia Mater, 9(8), e427 (2017).

    Article  CAS  Google Scholar 

  2. M. Elimelech and W A. Phillip, Science, 333(6043), 712 (2011).

    Article  CAS  Google Scholar 

  3. A. H. Haidari, S. G. J. Heijman and W. G. J. van der Meer, Sep. Purif. Technol., 192, 441 (2018).

    Article  CAS  Google Scholar 

  4. H. S. Abid, D. J. Johnson, R. Hashaikeh and N. Hilal, Desalination, 420, 384 (2017).

    Article  CAS  Google Scholar 

  5. C. Bae, K. Park, H. Heo and D. R. Yang, Korean J. Chem. Eng., 34(3), 844 (2017).

    Article  CAS  Google Scholar 

  6. D. Lin, Z. Ding, L. Liu and R. Ma, Comput. Chem. Eng., 44, 20 (2012).

    Article  CAS  Google Scholar 

  7. M. Taherinejad, S. Derakhshan and A. Yavarinasab, Desalination, 411, 59 (2017).

    Article  CAS  Google Scholar 

  8. A. H. Haidari, S. G. J. Heijman and W. G. J. van der Meer, Sep. Purif. Technol., 199, 9 (2018).

    Article  CAS  Google Scholar 

  9. A. I. Radu, M. S. H. van Steen, J. S. Vrouwenvelder, M. C. M. van Loosdrecht and C. Picioreanu, Water Res., 64, 160 (2014).

    Article  CAS  Google Scholar 

  10. S.S. Hong, W. Ryoo, M.-S. Chun and G.-Y. Chung, Korean J. Chem. Eng., 32(7), 1249 (2015).

    Article  CAS  Google Scholar 

  11. B. Gu, C. S. Adjiman and X. Y. Xu, J. Membr. Sci., 527, 78 (2017).

    Article  CAS  Google Scholar 

  12. A. Siddiqui, S. Lehmann, V. Haaksman, J. Ogier, C. Schellenberg, M. C. M. van Loosdrecht, J. C. Kruithof and J. S. Vrouwenvelder, Water Res., 119, 304 (2017).

    Article  CAS  Google Scholar 

  13. C.P. Koutsou, A.J. Karabelas and M. Kostoglou, Sep. Purif. Technol., 147, 90 (2015).

    Article  CAS  Google Scholar 

  14. M. Kostoglou and A.J. Karabelas, Ind. Eng. Chem. Res., 48(22), 10025 (2009).

    Article  CAS  Google Scholar 

  15. D. Y. Kim, B. Gu and D. R. Yang, Korean J. Chem. Eng., 30(9), 1691 (2013).

    Article  CAS  Google Scholar 

  16. O. Kavianipour, G. D. Ingram and H. B. Vuthaluru, J. Membr. Sci., 526, 156 (2017).

    Article  CAS  Google Scholar 

  17. M. Li, T. Bui and S. Chao, Desalination, 397, 194 (2016).

    Article  CAS  Google Scholar 

  18. V. V. Ranade and A. Kumar, J. Membr. Sci., 271(1-2), 1 (2006).

    Article  CAS  Google Scholar 

  19. Y. Li and K. Tung, J. Membr. Sci., 319(1-2), 286 (2008).

    Article  CAS  Google Scholar 

  20. Y. L. Li, K.L. Tung, M. Y. Lu and S.H. Huang, J. Membr. Sci., 329(1-2), 106 (2009).

    Article  CAS  Google Scholar 

  21. Y. L. Li, K. L. Tung, Y. S. Chen and K. J. Hwang, Desalination, 287, 200 (2012).

    Article  CAS  Google Scholar 

  22. S. Wardeh and H. P. Morvan, Desalination and Water Treatment, 1(1-3), 277 (2009).

    Article  Google Scholar 

  23. K. L. Tung, H. C. Teoh, C. W. Lee, C. H. Chen, Y. L. Li, Y. F. Lin, C. L. Chen and M. S. Huang, J. Membr. Sci., 495, 489 (2015).

    Article  CAS  Google Scholar 

  24. A.J. Karabelas, M. Kostoglou and C.P. Koutsou, Desalination, 356, 165 (2015).

    Article  CAS  Google Scholar 

  25. M. Taherinejad, J. Gorman, E. Sparrow and S. Derakhshan, J. Membr. Sci., 563, 210 (2018).

    Article  CAS  Google Scholar 

  26. C. P. Koutsou, S. G. Yiantsios and A. J. Karabelas, J. Membr. Sci., 291(1-2), 53 (2007).

    Article  CAS  Google Scholar 

  27. P. Sousa, A. Soares, E. Monteiro and A. Rouboa, Desalination, 349, 22 (2014).

    Article  CAS  Google Scholar 

  28. M. Kostoglou and A. J. Karabelas, Desalination, 316, 91 (2013).

    Article  CAS  Google Scholar 

  29. M. B. Minhas and W.-S. Kim, Desalination and Water Treatment, 54(9), 2343 (2014).

    Article  Google Scholar 

  30. P. P. Mane, P. K. Park, H. Hyung, J. C. Brown and J. H. Kim, J. Membr. Sci., 338(1-2), 119 (2009).

    Article  CAS  Google Scholar 

  31. H. Boulahfa, S. Belhamidi, F. Elhannouni, M. Taky, A. El Fadil and A. Elmidaoui, J. Environ. Chem. Eng., 7(2), 102937 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Moghimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherinejad, M., Moghimi, M. & Derakhshan, S. Hydrodynamic modeling of the spiral-wound membrane module including the membrane curvature: reverse osmosis case study. Korean J. Chem. Eng. 36, 2074–2084 (2019). https://doi.org/10.1007/s11814-019-0372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0372-1

Keywords

Navigation