Skip to main content
Log in

Modified kinetic rate equation model for cooling crystallization

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The kinetic rate equation (KRE) model, unlike the population balance equation model, can describe growth, nucleation, and even Ostwald ripening simultaneously. However, the KRE model cannot be applied in cooling crystallization systems. In this work, we propose a modified KRE model to describe cooling crystallization. The modified KRE model can successfully describe crystal growth and nucleation in cooling crystallization systems. In addition, the metastable zone width was simulated using the modified KRE model and compared with the experimental data in references. The results revealed that the modified KRE model could express the effect of overheating prior to cooling on the metastable zone width. As the extent of overheating increases, the metastable zone width becomes wider, which phenomenon can be clearly simulated by the modified KRE model. This modeling capability is attributed to the behavior of particle clusters that are sized less than the size of sub-nuclei. Because the population balance equation model cannot describe the metastable zone width, the modified KRE model has certain competitive advantages in its application to various crystallization systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Mullin, Crystallization, Elsevier (2001).

  2. M. Fujiwara, Z. K. Nagy, J. W. Chew and R. D. Braatz, J. Process Control, 15, 493 (2005).

    Article  CAS  Google Scholar 

  3. N. Sanzida and Z. K. Nagy, Comput. Chem. Eng., 130, 106559 (2019).

    Article  CAS  Google Scholar 

  4. C. F. C. Marcellos, H. Durand, J. S. I. Kwon, A. G. Barreto, P. L. da Cunha Lage, M. B. de Souza, A. R. Secchi and P. D. Christofides, AIChE J., 64, 1618 (2018).

    Article  CAS  Google Scholar 

  5. M.A. McDonald, A.S. Bommarius, R.W. Rousseau and M.A. Grover, Comput. Chem. Eng., 123, 331 (2019).

    Article  CAS  Google Scholar 

  6. H. Kim, K. Park, J. W Chang, T. Lee, S. H. Kim and D. R. Yang, Cryst. Growth Des., 19, 1748 (2019).

    Article  CAS  Google Scholar 

  7. K. Park, D. Y. Kim and D. R. Yang, Ind. Eng. Chem. Res., 55, 7142 (2016).

    Article  CAS  Google Scholar 

  8. I. H. Leubner, Curr. Opin. Colloid Interface Sci., 5, 151 (2000).

    Article  CAS  Google Scholar 

  9. T. Y. Chiu and P. D. Christofides, AIChE J., 46, 266 (2000).

    Article  CAS  Google Scholar 

  10. J.S.-I. Kwon, M. Nayhouse, P.D. Christofides and G. Orkoulas, Chem. Eng. Sci., 107, 47 (2014).

    Article  CAS  Google Scholar 

  11. J. S.-I. Kwon, M. Nayhouse, G. Orkoulas and P. D. Christofides, Chem. Eng. Sci., 119, 30 (2014).

    Article  CAS  Google Scholar 

  12. D. J. Griffin, M. A. Grover, Y. Kawajiri and R. W. Rousseau, Ind. Eng. Chem. Res., 55, 1361 (2016).

    Article  CAS  Google Scholar 

  13. H. Li, Y. Kawajiri, M.A. Grover and R.W. Rousseau, Ind. Eng. Chem. Res., 56, 4060 (2017).

    Article  CAS  Google Scholar 

  14. D. J. Griffin, Y. Kawajiri, M. A. Grover and R. W Rousseau, Cryst. Growth Des., 15, 305 (2014).

    Article  CAS  Google Scholar 

  15. D. J. Griffin, Y. Kawajiri, R. W. Rousseau and M. A. Grover, Chem. Eng. Sci., 164, 344 (2017).

    Article  CAS  Google Scholar 

  16. J. Li, C.J. Tilbury, M. N. Joswiak, B. Peters and M. F. Doherty, Cryst. Growth Des., 16, 3313 (2016).

    Article  CAS  Google Scholar 

  17. D. Ramkrishna and M. R. Singh, Annu. Rev. Chem. Biomol Eng., 5, 123 (2014).

    Article  CAS  Google Scholar 

  18. F. Puel, G. Févotte and J. Klein, Chem. Eng. Sci., 58, 3715 (2003).

    Article  CAS  Google Scholar 

  19. C. B. B. Costa, M. R. W Maciel and R. Maciel Filho, Comput. Chem. Eng., 31, 206 (2007).

    Article  CAS  Google Scholar 

  20. L. F. Farias, J. A. de Souza, R. D. Braatz and C. A. da Rosa, Comput. Chem. Eng., 123, 246 (2019).

    Article  CAS  Google Scholar 

  21. D. Fysikopoulos, B. Benyahia, A. Borsos, Z. K. Nagy and C. D. Rielly, Comput. Chem. Eng., 122, 275 (2019).

    Article  CAS  Google Scholar 

  22. B. Szilágyi, P. S. e. Agachi and Z. n. K. Nagy, Ind. Eng. Chem. Res., 57, 3320 (2018).

    Article  CAS  Google Scholar 

  23. S. Sulttan and S. Rohani, J. Cryst. Growth, 505, 19 (2019).

    Article  CAS  Google Scholar 

  24. C.A. da Rosa and R.D. Braatz, Ind. Eng. Chem. Res., 57, 11702 (2018).

    Article  CAS  Google Scholar 

  25. H. M. Hulburt and S. Katz, Chem. Eng. Sci., 19, 555 (1964).

    Article  CAS  Google Scholar 

  26. A. Randolph and M. Larson, Theory of particulate technology, Academic Press, New York (1971).

    Google Scholar 

  27. T. Vetter, M. Iggland, D. R. Ochsenbein, F. S. Hänseler and M. Mazzotti, Cryst. Growth Des., 13, 4890 (2013).

    Article  CAS  Google Scholar 

  28. X. Fu, D. Zhang, S. Xu, B. Yu, K. Zhang, S. Rohani and J. Gong, Cryst. Growth Des., 18, 2851 (2018).

    Article  CAS  Google Scholar 

  29. F. Anisi and H. J. Kramer, Chem. Eng. Res. Des., 138, 200 (2018).

    Article  CAS  Google Scholar 

  30. D. Kashchiev, Nucleation, Elsevier (2000).

  31. L. Farkas, Z. Phys. Chemie., 125, 236 (1927).

    CAS  Google Scholar 

  32. I. Stranski and R. Kaischew, Ann. Phys., 415, 330 (1935).

    Article  Google Scholar 

  33. R. Becker and W. Döring, Ann. Phys., 416, 719 (1935).

    Article  Google Scholar 

  34. K. Hussain, G. Thorsen and D. Malthe-Sørenssen, Chem. Eng. Sci., 56, 2295 (2001).

    Article  CAS  Google Scholar 

  35. F. L. Nordström, M. Svärd, B. Malmberg and Å.C. Rasmuson, Cryst. Growth Des., 12, 4340 (2012).

    Article  CAS  Google Scholar 

  36. T. Sugimoto, A. Mori and T. Inoue, J. Cryst. Growth, 292, 108 (2006).

    Article  CAS  Google Scholar 

  37. I. Lignos, R. Maceiczyk and A. J. deMello, Acc. Chem. Res., 50, 1248 (2017).

    Article  CAS  Google Scholar 

  38. Y. Tahri, Z. Kozisek, E. Gagnière, E. Chabanon, T. Bounahmidi and D. Mangin, Cryst. Growth Des., 16, 5689 (2016).

    Article  CAS  Google Scholar 

  39. J. Chang and G. Cooper, J. Comput. Phys., 6, 1 (1970).

    Article  Google Scholar 

  40. M. Iggland and M. Mazzotti, Cryst. Growth Des., 12, 1489 (2012).

    Article  CAS  Google Scholar 

  41. M. Trifkovic, M. Sheikhzadeh and S. Rohani, J. Cryst. Growth, 311, 3640 (2009).

    Article  CAS  Google Scholar 

  42. M. Lenka and D. Sarkar, J. Cryst. Growth, 408, 85 (2014).

    Article  CAS  Google Scholar 

  43. Q. Hu, S. Rohani, D. Wang and A. Jutan, AIChE J., 50, 1786 (2004).

    Article  CAS  Google Scholar 

  44. D. R. Yang, K. S. Lee, J. S. Lee, S. G. Kim, D. H. Kim and Y. K. Bang, Ind. Eng. Chem. Res., 46, 8158 (2007).

    Article  CAS  Google Scholar 

  45. S. S. Kadam, S. A. Kulkarni, R. C. Ribera, A. I. Stankiewicz, J. H. ter Horst and H. J. Kramer, Chem. Eng. Sci., 72, 10 (2012).

    Article  CAS  Google Scholar 

  46. M. Kobari, N. Kubota and I. Hirasawa, CrystEngComm, 15, 1199 (2013).

    Article  CAS  Google Scholar 

  47. K.-J. Kim and A. Mersmann, Chem. Eng. Sci., 56, 2315 (2001).

    Article  CAS  Google Scholar 

  48. J. Ulrich and C. Strege, J. Cryst. Growth, 237, 2130 (2002).

    Article  Google Scholar 

  49. S. Qi, P. Avalle, R. Saklatvala and D. Q. Craig, Eur. J. Pharm. Biopharm., 69, 364 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Ryook Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Park, K. & Yang, D.R. Modified kinetic rate equation model for cooling crystallization. Korean J. Chem. Eng. 36, 2095–2103 (2019). https://doi.org/10.1007/s11814-019-0415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0415-7

Keywords

Navigation