Skip to main content
Log in

Effect of naphthalene quinoline and H2S on DBT hydrodesulfurization over unsupported NiMoW catalyst

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Unsupported catalysts have attracted much attention for high activity in comparison with the traditional supported catalyst. Meanwhile, the clear structure of unsupported catalysts is helpful for the recognition of active phase for conducting the industry production. The NiMoW unsupported catalyst was prepared by hydrothermal synthesis and characterized by BET, XRD and HRTEM. The effects of naphthalene, quinoline and H2S on the hydrodesulfurization reactivity of dibenzothiophene (DBT) were investigated in both a batch autoclave and a continuous 10 ml fixed bed micro-reactor over NiMoW and supported catalyst for comparison. The results showed that the hydrogenation reaction and the hydrogenolysis reaction occurred on different active sites. For supported catalyst, the inhibition was relatively weaker, and the inhibition of the hydrodesulfurization pathway was much higher than the direct desulfurization pathway. Although unsupported catalyst was very sensitive to quinoline and H2S in this experiment, the HDS ratio on the unsupported catalyst was maintained at a high level above 99.7%, which is attributed to the very high active site density of unsupported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Liang, M. Wu, P. Wei, J. Zhao, H. Huang, C. Li, Y. Lu, Y. Liu and C. Liu, J. Catal., 358, 155 (2018).

    Article  CAS  Google Scholar 

  2. Y. Gao, W. Han, X. Long, H. Nie and D. Li, Appl. Catal., B, 224, 330 (2018).

    Article  CAS  Google Scholar 

  3. T. Huang, J. Xu and Y. Fan, Appl. Catal., B., 220, 42 (2018).

    Article  CAS  Google Scholar 

  4. D. Zhang, W. Q. Liu, Y. A. Liu, U. J. Etim, X. M. Liu and Z. F. Yan, Chem. Eng. J., 330, 706 (2017).

    Article  CAS  Google Scholar 

  5. C. Liu, H. Liu, C. Yin, X. Zhao, B. Liu, X. Li, Y. Li and Y. Liu, Fuel, 154, 88 (2015).

    Article  CAS  Google Scholar 

  6. C. L. Yin, X. P. Zhai, L. Y. Zhao and C. G. Liu, J. Fuel Chem. Technol., 41, 991 (2013).

    Article  CAS  Google Scholar 

  7. H. Wu, A. Duan, Z. Zhao, T. Li, R. Prins and X. Zhou, J. Catal., 317, 303 (2014).

    Article  CAS  Google Scholar 

  8. W. Zhou, Q. Zhang, Y. Zhou, Q. Wei, L. Du, S. Ding, S. Jiang and Y. Zhang, Catal. Today, 305, 171 (2018).

    Article  CAS  Google Scholar 

  9. S. Ding, A. Li, S. Jiang, Y. Zhou, Q. Wei, W. Zhou, Y. Huang, Q. Yang and T. Fan, Fuel, 237, 429 (2019).

    Article  CAS  Google Scholar 

  10. F. Sánchez-Minero, J. Ramírez, A. Gutiérrez-Alejandre, C. Fernández-Vargas, P. Torres-Mancera and R. Cuevas-Garcia, Catal. Today, 133, 267 (2008).

    Article  Google Scholar 

  11. C. Yin, H. Liu, L. Zhao, B. Liu, S. Xue, N. Shen, Y. Liu, Y. Li and C. Liu, Catal. Today, 259, 409 (2015).

    Article  Google Scholar 

  12. A. Olivas, T. A. Zepeda, I. Villalpando and S. Fuentes, Catal. Commun., 9, 1317 (2008).

    Article  CAS  Google Scholar 

  13. Y. Wang, C. Yin, X. Zhao and C. Liu, Catal. Commun., 88, 13 (2017).

    Article  CAS  Google Scholar 

  14. C. Yin, Y. Wang, S. Xue, H. Liu, H. Li and C. Liu, Fuel, 175, 13 (2016).

    Article  CAS  Google Scholar 

  15. E. Altamirano, J. A. D. L. Reyes, F. Murrieta and M. Vrinat, J. Catal., 235, 403 (2005).

    Article  CAS  Google Scholar 

  16. N. Y. Topsøe and H. Topsøe, J. Catal., 84, 386 (1983).

    Article  Google Scholar 

  17. L. Wang, Y. Zhang, Y. Zhang, P. Liu, H. Han, M. Yang, Z. Jiang and C. Li, Appl. Catal., A., 394, 18 (2011).

    Article  CAS  Google Scholar 

  18. Y. Iwata, K. Sato, T. Yoneda, Y. Miki, Y. Sugimoto, A. Nishijima and H. Shimada, Catal. Today, 45, 353 (1998).

    Article  CAS  Google Scholar 

  19. H. Farag, K. Sakanishi, I. Mochida and D. D. Whitehurst, Energy Fuels, 13, 449 (1999).

    Article  CAS  Google Scholar 

  20. H. Farag, M. Kishida and H. Al-Megren, Appl. Catal., A, 469, 173 (2014).

    Article  CAS  Google Scholar 

  21. M. S. Nikul’Shina, A. V. Mozhaev, C. Lancelot, P. Blanchard, C. Lamonier and P. A. Nikul’Shin, Russ. J. Appl. Chem., 92, 105 (2019).

    Article  Google Scholar 

  22. S. Kasahara, T. Shimizu and M. Yamada, Catal. Today, 35, 59 (1997).

    Article  CAS  Google Scholar 

  23. T. C. Ho, J. Catal., 219, 442 (2003).

    Article  CAS  Google Scholar 

  24. M. Egorova and R. Prins, J. Catal., 221, 11 (2004).

    Article  CAS  Google Scholar 

  25. J. Wan, Q. Liu, T. Wang, H. Yuan, P. Zhang and X. Gu, Solid State Commun., 284, 25 (2018).

    Article  Google Scholar 

  26. K. C. Pratt, J. V. Sanders and V. Christov, J. Catal., 124, 416 (1990).

    Article  CAS  Google Scholar 

  27. L. S. Byskov, J. K. Nørskov, B. S. Clausen and H. Topsøe, J. Catal., 187, 109 (1999).

    Article  CAS  Google Scholar 

  28. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan and H. Toulhoat, J. Catal., 190, 128 (2000).

    Article  CAS  Google Scholar 

  29. C. E. Xiang, Y. M. Chai, J. Fan and C. G. Liu, J. Fuel Chem. Technol., 39, 355 (2011).

    Article  CAS  Google Scholar 

  30. R.R. Chianelli, M. Daage and M. J. Ledoux, Adv. Catal., 40, 177 (1994).

    CAS  Google Scholar 

  31. W.H. Qian, A. Ishihara, Y. Okoshi, W. Nakakami, M. Godo and T. Kabe, J. Chem. Soc. Faraday Trans., 93, 4395 (1997).

    Article  CAS  Google Scholar 

  32. F. Bataille, J. L. Lemberton, P. Michaud, G. Pérot, M. Vrinat, M. Lemaire, E. Schulz, M. Breysse and S. Kasztelan, J. Catal., 191, 409 (2000).

    Article  CAS  Google Scholar 

  33. R. R. Chianelli, G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner and H. Toulhoat, Appl. Catal., A, 227, 83 (2002).

    Article  CAS  Google Scholar 

  34. M.-T. Nguyen, M. Tayakout-Fayolle, F. Chainet, G. D. Pirngruber and C. Geantet, Appl. Catal., A, 530, 132 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Fund of China (Grant No. 21676301), the National key R & D program of China (2017YFB0602500). Financial support from the program of China Scholarships Council (No. 201806455007) and Petro China Corporation Limited is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Zhang, H., Wu, T. et al. Effect of naphthalene quinoline and H2S on DBT hydrodesulfurization over unsupported NiMoW catalyst. Korean J. Chem. Eng. 36, 1983–1990 (2019). https://doi.org/10.1007/s11814-019-0409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0409-5

Keywords

Navigation