Skip to main content
Log in

Photoelectrochemical impedance spectroscopy sensor for cloxacillin based on tetrabutylammonium octamolybdate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, a sensor based on tetrabutylammonium octamolybdate (Bu4N)4 (Mo8O26) (POM) has been immobilized on the indium tin oxide (ITO) coated glass substrates using the poly(allylamine hydrochloride) (PAH) for a selective determination of cloxacillin. The morphology and the hydrophobicity of the modified electrodes were examined using the scanning electron microscopy (SEM) and contact angle measurements (CAM), respectively. The electrochemical impedance spectroscopy (EIS) is used to follow the detection progress of cloxacillin in the darkness and under illumination with the lowest limits of detection (10–11.5 M) and a wide linear range of 10−11 to 10−7 M. The evolution of the equivalent electrical circuit’s parameters was studied to establish the ability of the light excitation to improve the cloxacillin detection.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hocquet D, Muller A, Bertrand X (2016) What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect 93(4):395–402

    CAS  PubMed  Google Scholar 

  2. Kosutic K, Dolar D, Asperger D, Kunst B (2007) Removal of antibiotics from a model wastewater by RO/NF membranes. Sep Purif Rev 53(3):244–249

    CAS  Google Scholar 

  3. Tahrani L, Loco JV, Anthonissen R, Verschaeve L, Ben Mansour H, Reyns T (2017) Identification and risk assessment of human and veterinary antibiotics in the wastewater treatment plants and the adjacent sea in Tunisia. Water Sci Technol 76(11-12):3000–3021

    CAS  PubMed  Google Scholar 

  4. Zheng W, Wen X, Zhang B, Qiu Y (2019) Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci Total Environ 646:1293–1303

    CAS  PubMed  Google Scholar 

  5. Poole K (2001) Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4(5):500–508

    CAS  PubMed  Google Scholar 

  6. Pawara MK, Tayade KC, Sahoo SK, Mahulikar PP, Kuwar AS, Chaudhari BL (2016) Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin. Biosens Bioelectron 81:274–279

    Google Scholar 

  7. Pavlović DM, Nikšić K, Livazović S, Brnardić I, Anžlovar A (2015) Preparation and application of sulfaguanidine-imprinted polymer on solid-phase extraction of pharmaceuticals from water. Talanta 131:99–107

    Google Scholar 

  8. Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, Hou YS, Elangovan A (2016) Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci 475:46–56

    CAS  PubMed  Google Scholar 

  9. El Hassani NE, Llobet E, Popescu LM, Ghita M, Bouchikhi B, El Bari N (2018) Development of a highly sensitive and selective molecularly imprinted electrochemical sensor for sulfaguanidine detection in honey samples. J Electroanal Chem 823:647–655

    Google Scholar 

  10. Ensafi AA, Esfahani PN, Rezaei B (2018) Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots. Sens Actuator B-Chem 270:192–199

    CAS  Google Scholar 

  11. Shamsipur M, Moradi N, Pashabadi A (2018) Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: a highly sensitive impedimetric melamine sensor. J Solid State Electrochem 22:169–180

    CAS  Google Scholar 

  12. Shiravand T, Azadbakht A (2016) Impedimetric biosensor based on bimetallic AgPt nanoparticle-decorated carbon nanotubes as highly conductive film surface. J Solid State Electrochem 21:1699–1711

    Google Scholar 

  13. Yang J, Zhang W (2014) Indicator-free impedimetric detection of BCR/ABL fusion gene based on ordered FePt nanoparticle-decorate electrochemically reduced graphene oxide. J. Solid State Electrochem 18:2863–2868

    CAS  Google Scholar 

  14. Ahammad AJS, Al Mamun A, Akter T, Mamun MA, Faraezi S, Monira FZ (2016) Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. J Solid State Electrochem 20:1933–1939

    CAS  Google Scholar 

  15. Willner I, Willner B, Katz E (2007) Biomolecule–nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70(1):2–11

    CAS  PubMed  Google Scholar 

  16. Dilgin DG, Gökçel HI (2015) Photoelectrochemical glucose biosensor in flow injection analysis system based on glucose dehydrogenase immobilized on poly-hematoxylin modified glassy carbon electrode. Anal Methods 7:990–999

    CAS  Google Scholar 

  17. Zhao WW, Xiong M, Li XR, Xu JJ, Chen HY (2014) Photoelectrochemical bioanalysis: a mini review. Electrochem Commun 38:40–43

    CAS  Google Scholar 

  18. Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Hybrid polyoxometalate materials for photo(electro-) chemical applications. Coord Chem Rev 306:217–234

    CAS  Google Scholar 

  19. Fernandes DM, Brett CMA, Cavaleiro AMV (2011) Preparation and electrochemical properties of modified electrodes with Keggin-type silicotungstates and PEDOT. J Electroanal Chem 660:50–56

    CAS  Google Scholar 

  20. Turdean G, Popescu IC (2012) Self-assembled architecture based on triiron-substituted polyoxomolybdate anion and positively charged polymer. J Solid State Electrochem 16:681–687

    CAS  Google Scholar 

  21. Skunik M, Baranowska B, Fattakhova D, Miecznikowski K, Chojak M, Kuhn A, Kulesza PJ (2006) Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles. J Solid State Electrochem 10:168–175

    CAS  Google Scholar 

  22. Li N, Sun Z, Liu R, Xu L, Xu K, Song XM (2016) Enhanced power conversion efficiency in phthalocyanine-sensitized solar cells by modifying TiO2 photoanode with polyoxometalates. Sol Energy Mater Sol Cells 157:853–860

    CAS  Google Scholar 

  23. Ni L, Yang G, Sun C, Niu G, Wu Z, Chen C, Gong X, Zhou C, Zhao G, Gu J, Ji W, Huo X, Chen M, Diao G (2017) Self-assembled three-dimensional graphene/ polyaniline/ polyoxometalate hybrid as cathode for improved rechargeable lithium ion batteries. Mater Today Energy 6:53–64

    Google Scholar 

  24. Zhang Y, Lin B, Wang J, Han P, Xu T, Sun Y, Zhang X, Yang H (2016) Polyoxometalates@ metal-organic frameworks derived porous MoO3@CuO as electrodes for symmetric all-solid-state supercapacitor. Electrochim Acta 191:795–804

    CAS  Google Scholar 

  25. Li SW, Gao RM, Zhang W, Zhang Y, Zhao JS (2018) Heteropolyacids supported on macroporous materials POM@MOF-199@LZSM-5: highly catalytic performance in oxidative desulfurization of fuel oil with oxygen. Fuel 221:1–11

    Google Scholar 

  26. Du DY, Yan LK, Su ZM, Li SL, Lan YQ, Wang EB (2013) Chiral polyoxometalate-based materials: from design syntheses to functional applications. Coord Chem Rev 257(3):702–717

    CAS  Google Scholar 

  27. Menona D, Thomas RT, Narayanan S, Maya S, Jayakumar R, Hussain F, Lakshmanan V, Nair SV (2018) A novel chitosan/polyoxometalate nano-complex for anti-cancer applications. Carbohydr Polym 84:887–893

    Google Scholar 

  28. Yolaa ML, Gödeb C, Atar N (2017) Molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes for electrochemical recognition of bilirubin. Electrochim Acta 246:135–140

    Google Scholar 

  29. Ensafi AA, Khorzoughi MG, Rezaei B, Asl MJ (2017) Electrochemical behavior of polyoxometalates decorated on poly diallyl dimethyl ammonium chloride-MWCNTs: a highly selective electrochemical sensor for determination of guanine and adenine. J Taiwan Inst Chem Eng 78:56–64

    CAS  Google Scholar 

  30. Chen L, Tian L, Liu L, Tian X, Song W, Xu H, Wang X (2005) Preparation and assay performance of supramolecule of cyclophane-complexed polyoxometalates supported on the gold surface. Sens Actuator B-Chem 110:271–278

    CAS  Google Scholar 

  31. Fernandes DM, Nunes M, Baeza BB, Ramos IR, Ruiz AG, Matos CD, Freire C (2017) PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophen. J Solid State Electrochem 21:1059–1068

    CAS  Google Scholar 

  32. Yokus ÖA, Kardas F, Akyıldırım O, Eren T, Atar N, Yola ML (2016) Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens Actuators B-Chem 233:47–54

    CAS  Google Scholar 

  33. Ben Khélifa A, Mzali JC, Ezzayani K, Freslon S, Belkhiria MS (2016) Intramolecular energy transfer studies of a new mixed isopolymolybdates [Eu(dmso)8][Eu(η2-NO3)2(dmso)4(α-Mo8O26)0.5][Mo6O19]: synthesis, characterization and europium(III) luminescence properties. Inorg Chem Commun 70:56–64

    Google Scholar 

  34. Wang J, Huang N, Pan CJ, Kwok SCH, Yang P (2004) Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition. Surf Coat Technol 186:299–304

    CAS  Google Scholar 

  35. Marmur A (1994) Thermodynamic aspects of contact angle hysteresis. Adv Colloid Interf Sci 50:121–141

    CAS  Google Scholar 

  36. Oss VCJ, Good RJ, Chaudhurg MK (1987) Monopolar surfaces. Adv Colloid Interf Sci 28(1):35–64

    Google Scholar 

  37. Sang X, Xu X, Bian L, Liu X, Wang Y (2018) The loading of polyoxometalates based compound on reduced graphene oxide, a composite material for electrical energy storage and tetracycline removal. Solid State Sci 83:8–16

    CAS  Google Scholar 

  38. Polido G, Shi X, Xu D, Guo C, Thai R, Patterson JP, Gianneschi NC, Suchyna TM, Sachs F, Holland GP (2018) Investigating the interaction of Grammostola rosea venom peptides and model lipid bilayers with solid-state NMR and electron microscopy techniques. Biochim Biophys Acta Biomembr 1861:151–160

    PubMed  Google Scholar 

  39. Chawla S, Rawal R, Sharma S, Pundir CS (2012) An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices. Biochem Eng J 68:76–84

    CAS  Google Scholar 

  40. Chen L, Liu J, Zeng Q, Yu HA, Zhang H, Ding L (2009) Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. J Chromatogr A 1216(18):3710–3719

    CAS  PubMed  Google Scholar 

  41. Ismail MB, Carreiras F, Agniel R, Mili D, Sboui D, Znina N, Othmane A (2106) Detection of epithelial cells based on an APTES-Anti-E-cadherinfilm for early cancer monitoring. Colloids Surf B 146:550–557

    Google Scholar 

  42. Diao J, Ren D, Engstrom JR, Lee KH (2005) A surface modification strategy on silicon nitride for developing biosensors. Anal Biochem 343(2):322–328

    CAS  PubMed  Google Scholar 

  43. Ouberai MM, Xu K, Welland ME (2014) Effect of the interplay between protein and surface on the properties of adsorbed protein layers. Biomaterials 35(24):6157–6163

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zanina N, Haddad S, Othmane A, Jouenne T, Vaudry D, Souiri M, Mora L (2012) Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen. Chem Pap 66:532–542

    CAS  Google Scholar 

  45. Raj J, Herzog G, Manning M, Volcke C, MacCraith BD, Ballantyne S, Thompson M, Arrigan DWM (2009) Surface immobilisation of antibody on cyclic olefin copolymer for sandwich immunoassay. Biosens Bioelectron 24(8):2654–2658

    CAS  PubMed  Google Scholar 

  46. Ebdelli R, Rouis A, Mlika A, Bonnamour I, Jaffrezic-Renault N, Ben Ouada H, Davenas J (2011) Electrochemical impedance detection of Hg2+, Ni2+ and Eu3+ ions by a new azo-calix[4]arene membrane. J Electroanal Chem 661:31–38

    CAS  Google Scholar 

  47. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    CAS  Google Scholar 

  48. Mourzina Y, Mai T, Poghossian A, Ermolenko Y, Yoshinobu T, Valsov Y, Iwasak H, Schöning MJ (2003) K+-selective field-effect sensors as transducers for bioelectronic applications. Electrochim Acta 48:3333–3339

    CAS  Google Scholar 

  49. Wang M, Wang L, Wang G, Ji X, Bai Y, Li T, Gong S, Li J (2004) Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions. Biosens Bioelectron 19(6):575–582

    CAS  PubMed  Google Scholar 

  50. Silva GJL, Andrade CAS, Oliveira IS, Melo CPD, Oliveira MDL (2013) Impedimetric sensor for toxigenic Penicillium sclerotigenum detection in yam based on magnetite-poly(allylamine hydrochloride) composite. J Colloid Interface Sc 396:258–263

    CAS  Google Scholar 

  51. Qiua S, Gaoa S, Liu Q, Lin Z, Qiua B, Chen G (2011) Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(I) catalyzed click chemistry. Biosens Bioelectron 26:4326–4330

    Google Scholar 

  52. Ruan C, Yang L, Li Y (2002) Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal Chem 74(18):4814–4820

    CAS  PubMed  Google Scholar 

  53. Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20:289–305

    CAS  PubMed  Google Scholar 

  54. Zhu JJ, Xu JZ, He JT, Wang YJ, Miao Q, Chen HY (2003) An electrochemical Immunosensor for assays of C-reactive protein. Anal Lett 36:1547–1556

    CAS  Google Scholar 

  55. Diakowski PM, Xiao Y, Petryk MWP, Kraatz HB (2010) Impedance based detection of chemical warfare agent mimics using ferrocene-lysine modified carbon nanotubes. Anal Chem 82(8):3191–3197

    CAS  PubMed  Google Scholar 

  56. Yang L, Ran X, Cai L, Li Y, Zhao H, Li CP (2016) Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosens Bioelectron 83:347–352

    CAS  PubMed  Google Scholar 

  57. Borghola N, Mora L, Sakly N, Lejeune P, Jouenne T, Jaffrézic-Renault N, Othmane A (2011) Electrochemical monitoring of chlorhexidine digluconate effect on polyelectrolyte immobilized bacteria and kinetic cell adhesion. J Biotechnol 151:114–121

    Google Scholar 

  58. Rouis A, Mlika R, Davenas J, Ben Ouada H, Bonnamour I, Jaffrezic N (2007) Impedance spectroscopic investigations of ITO modified by new Azo-calix[4]arene immobilised into electroconducting polymer (MEHPPV). J Electroanal Chem 601:29–38

    CAS  Google Scholar 

  59. Rouis A, Echabaane M, Sakly N, Dumazet-Bonnamour I, Ben Ouada H (2013) Electrochemical analysis of a PPV derivative thin film doped with ß-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg2+ ions. Synth Met 164:78–87

    CAS  Google Scholar 

  60. Echabaane M, Rouis A, Mahjoub MA, Bonnamour I, Ben Ouada H (2017) Impedimetric sensing proprieties of ITO electrodes functionalized with PEDOT:PSS/Azo-calix[4]arene for the detection of Al3+ ions under light excitation. J Electron Mater 46:418–424

    CAS  Google Scholar 

  61. Braik M, Dridi C, Ali A, Abbas MN, Ben Ali M, Errachid A (2015) Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Org Electron 16:77–78

    CAS  Google Scholar 

  62. Zhu Z, Zhang L, Marimuthu A, Yang Z (2003) Large-volume sample stacking combined with separation by 2-hydroxypropyl-β-cyclodextrin for analysis of isoxyzolylpenicillins by capillary electrophoresis. Electrophoresis 24:3089–3096

    CAS  PubMed  Google Scholar 

  63. Puig P, Borrull F, Calull M, Aguilar C (2005) Strategies for analyzing cephalosporins by microemulsion electrokinetic chromatography. Electrophoresis 26(4-5):954–961

    CAS  PubMed  Google Scholar 

  64. Puig P, Borrull F, Aguilar C, Calull M (2006) Sample stacking for the analysis of penicillins by microemulsion electrokinetic capillary chromatography. J Chromatogr B 831:196–204

    CAS  Google Scholar 

  65. Pérez MIB, Campaña AMG, Blanco CC, Iruela MDO (2007) Large-volume sample stacking for the analysis of seven β-lactam antibiotics in milk samples of different origins by CZE. Electrophoresis 28:4082–4090

    Google Scholar 

  66. Santos SM, Henriques M, Duarte AC, Esteves VI (2007) Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta 71(2):731–737

    CAS  PubMed  Google Scholar 

  67. Perez MIB, Rodriguez LC, Blanco CC (2007) Analysis of different β-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography. J Pharm Biomed Anal 43(2):746–752

    CAS  PubMed  Google Scholar 

  68. Huang HY, Hsieh SH (2008) Sample stacking for the analysis of penicillins by microemulsion electrokinetic chromatography. Electrophoresis 29(18):3905–3915

    CAS  PubMed  Google Scholar 

  69. Perez MIB, Campana AMG, Iruela MDO, Blanco CC, Gracia LG (2009) Multiresidue determination of penicillins inenvironmental waters and chicken musclesamples by means of capillary electrophoresis-tandem mass spectrometry. Electrophoresis 30:1708–1717

    Google Scholar 

  70. Ma L, Kang WJ, Xu WD, Niu LM, Shi HM, Li S (2012) Flow-injection chemiluminescence determination of penicillin antibiotics in drugs and human urine using luminol-Ag(III) complex system. J Analyt Chem 67:219–225

    CAS  Google Scholar 

  71. García MLC, Caballos MPA, Hens AG (2017) Determination of veterinary penicillin antibiotics by fast high-resolution liquid chromatography and luminescence detection. Talanta 170:343–349

    Google Scholar 

  72. Rezaei B, Meghdadi S, Bagherpour S (2009) Perchlorate-selective polymeric membrane electrode based on bis(dibenzoylmethanato)cobalt(II) complex as a neutral carrier. J Hazard Mater 161(2-3):641–648

    CAS  PubMed  Google Scholar 

  73. Firooz AR, Ensafi AA, Karimi K, Sharghi H (2013) Development of a specific and highly sensitive optical chemical sensor for determination of Hg(II) based on a new synthesized ionophore. Mater Sci Eng C 33(7):4167–4172

    CAS  Google Scholar 

  74. Tahvili A, Poush MK, Ahmed M, Parsaee Z (2019) New efficient inorganic-organic nanofibers electrospun membrane for fluorescence detection and removal of mercury(II) ions. J Mol Struct 1179:242–251

    CAS  Google Scholar 

  75. Hidayah Shahar H, Tan LL, Ta GC, Heng LY (2019) Optical enzymatic biosensor membrane for rapid in situ detection of organohalide in water samples. Microchem J 146:41–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Najlaoui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najlaoui, D., Echabaane, M., Ben Khélifa, A. et al. Photoelectrochemical impedance spectroscopy sensor for cloxacillin based on tetrabutylammonium octamolybdate. J Solid State Electrochem 23, 3329–3341 (2019). https://doi.org/10.1007/s10008-019-04440-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04440-0

Keywords

Navigation