Skip to main content

Advertisement

Log in

Synthesis of zirconium diboride and its application in the protection of  stainless steel surface in harsh environment

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Surface degradation of steel is one of the key problems of steel end user because of the electrochemical reaction at the steel surface caused by atmospheric weather condition. The major problem with steel is its surface degradation because of the electrochemical reaction at the surface from the atmospheric weather condition. To address this issue, zirconium diboride anticorrosive film has been fabricated on stainless steel by the chemical process. The synthesis of ZrB2 (~ 150 nm) has been carried out at via reaction of ZrO2 nanoparticles (10 nm) with amorphous boron at 1200 °C under argon atmosphere. The scalable doctor blade technique has been employed for the fabrication of ZrB2 film. The electrochemical performance, viz linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) studies of ZrB2 on 304 grade stainless steel (SS), shows highly anticorrosive behaviour with excellent protection efficiency (up to 98% in acidic media) as compared to bare 304SS in neutral, acidic and alkaline media.

New chemical process of fabrication of ZrB2 anticorrosive film on steel substrate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sedriks A (1996) Corrosion of stainless steel, 2nd ed; ISBN: 978-0-471-00792-0.

  2. Wang H, Sweikart M (2003) Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 115:243–251

    CAS  Google Scholar 

  3. Abdallah M (2003) Corrosion behaviour of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones. Mater Chem Phys 82:786–792

    CAS  Google Scholar 

  4. Kazazi M, Haghighi M, Yarali D, Zaynolabedini MH (2018) Improving corrosion resistance of 316L austenitic stainless steel using ZrO2 Sol-Gel coating in nitric acid solution. J Mater Eng Perform 27:1093–1102

    CAS  Google Scholar 

  5. IMPACT breaks new ground in the study of corrosion management. http://www.materialsperformance.com/articles/material-selection-design/2015/12/impact-breaks-new-ground-in-the-study-of-corrosion-management. Accessed 16 Aug 2018

  6. Budman E, Stevens D (1998) Tin-zinc plating. Anti-Corrosion Methods Mater 45:327–332

    CAS  Google Scholar 

  7. Audronis M, Kelly PJ, Arnell RD et al (2005) Deposition of multicomponent chromium boride based coatings by pulsed magnetron sputtering of powder targets. Surf Coatings Technol 200:1616–1623

    CAS  Google Scholar 

  8. Stamm, Werner, (1999) Product with an anticorrosion protective layer and a method for producing an anticorrosion protective, US6610419.

  9. Tedim J, Poznyak SK, Kuznetsova A et al (2010) Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers. ACS Appl Mater Interfaces 2:1528–1535

    CAS  PubMed  Google Scholar 

  10. Sutthiruangwong S, Mori G (2003) Corrosion properties of Co-based cemented carbides in acidic solutions. Int J Refract Met Hard Mater 21:135–145

    CAS  Google Scholar 

  11. Nunes PCR, Ramanathan LV (1995) Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion 51:610–617

    CAS  Google Scholar 

  12. Kao C-T, Ding S-J, Chen Y-C, Huang T-H (2002) The anticorrosion ability of titanium nitride (TiN) plating on an orthodontic metal bracket and its biocompatibility. J Biomed Mater Res 63:786–792

    CAS  PubMed  Google Scholar 

  13. Mahvash F, Eissa S, Bordjiba T et al (2017) Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci Rep 7:42139

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dennis J, Such T (1993) Nickel and chromium plating, ISBN- 9781845698638.

  15. Sun GF, Zhang YK, Zhang MK et al (2014) Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr–CrB2. Appl Surf Sci 295:94–107

    CAS  Google Scholar 

  16. Ürgen M, Çakir AF, Eryilmaz OL, Mitterer C (1995) Corrosion of zirconium boride and zirconium boron nitride coated steels. Surf Coatings Technol 71:60–66

    Google Scholar 

  17. Monticelli C, Bellosi A, Dal Colle M (2004) Electrochemical behavior of ZrB2 in aqueous solutions. J Electrochem Soc 151:B331

    CAS  Google Scholar 

  18. Armas IA (2008) Duplex stainless steels: brief history and some recent alloys Rec. Pat. Mech. Eng 1:1

    Google Scholar 

  19. Brach M, Medri V, Bellosi A (2007) Corrosion of pressureless sintered ZrB2-MoSi2 composite in H2SO4 aqueous solution. J Eur Ceram Soc 27:1357–1360

    CAS  Google Scholar 

  20. Li L, Li H, Li Y et al (2015) A SiC-ZrB2-ZrC coating toughened by electrophoretically-deposited SiC nanowires to protect C/C composites against thermal shock and oxidation. Appl Surf Scienc 349:465–471

    CAS  Google Scholar 

  21. Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2008) Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. J Am Ceram Soc 91:1405–1411

    CAS  Google Scholar 

  22. Feng HP, Hsu CH, Lu JK, Shy YH (2003) Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel. Mater Sci Eng A 349:73–79

    Google Scholar 

  23. El-Egamy SS, Badaway WA (2004) Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. J Appl Electrochem 34:1153–1158

    CAS  Google Scholar 

  24. Loto RT (2012) Corrosion resistance of austenitic stainless steel in sulphuric acid. Int J Phys Sci 7:1677–1688

    CAS  Google Scholar 

  25. Ohko Y, Saitoh S, Tatsuma T, Fujishima A (2001) Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel. J Electrochem Soc 148:B24

    CAS  Google Scholar 

  26. Loa I, Kunc K, Syassen K, Bouvier P (2002) Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phy Rev B 66:134101

    Google Scholar 

  27. Kinoshita H, Otani S, Kamiyama S et al (2001) Zirconium diboride (0001) as an electrically conductive lattice-matched substrate for gallium nitride. Japanese J Appl Physics 40:10–13

    Google Scholar 

  28. Telle R, Sigl LS, Takagi K Boride-based hard materials. In: Handbook of Ceramic Hard Materials. Wiley-VCH Verlag GmbH, Weinheim, pp 802–945

  29. Xin Y, Qizhong H, Zhean S et al (2016) Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame. Corros Sci 107:9–20

    Google Scholar 

  30. Zhang Y, Li R, Jiang Y et al (2011) Morphology evolution of ZrB2 nanoparticles synthesized by sol-gel method. J Solid State Chem 184:2047–2052

    CAS  Google Scholar 

  31. Mishra SK, Das S, Pathak LC (2004) Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis. Mater Sci Eng A 364:249–255

    Google Scholar 

  32. Chen L, Gu Y, Yang Z et al (2004) Preparation and some properties of nanocrystalline ZrB2 powders. Scr Mater 50:959–961

    CAS  Google Scholar 

  33. Zhao H, He Y, Jin Z (1995) Preparation of zirconium boride powder. J Am Ceram Soc 78:2534–2536

    CAS  Google Scholar 

  34. Li R, Lou H, Yin S et al (2011) Nanocarbon-dependent synthesis of ZrB2 in a binary ZrO2 and boron system. J Alloys Compd 509:8581–8583

    CAS  Google Scholar 

  35. Tian C, Gao D, Zhang Y et al (2011) Oxidation behaviour of zirconium diboride-silicon carbide ceramic composites under low oxygen partial pressure. Corros Sci 53:3742–3746

    CAS  Google Scholar 

  36. Chamberlain AL, Fahrenholtz WG, Hilmas GE (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 1172:1170–1172

    Google Scholar 

  37. Sonber JK, Suri AK (2011) Synthesis and consolidation of zirconium diboride: review. Adv Appl Ceram 110:321–334

    CAS  Google Scholar 

  38. Zhang SC, Hilmas GE, Fahrenholtz WG (2006) Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc 89:1544–1550

    CAS  Google Scholar 

  39. Wang P, Qi Y, Zhou S, et al (2016) Polycrystalline ZrB2 coating prepared on graphite by chemical vapor deposition. Phys. Status Solidi B253 8:1590–1595. https://doi.org/10.1002/pssb.201552752

    CAS  Google Scholar 

  40. Pol VG, Pol SV, Gedanken A (2011) Dry autoclaving for the nanofabrication of sulfides, selenides, borides, phosphides, nitrides, carbides, and oxides. Adv Mater 23:1179–1190

    CAS  PubMed  Google Scholar 

  41. Zhang S, Khangkhamano M, Zhang H, Yeprem HA (2014) Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction. J Am Ceram Soc 97:1686–1688

    CAS  Google Scholar 

  42. Ran S, Van Der Biest O, Vleugels J (2010) ZrB2 powders synthesis by borothermal reduction. J Am Ceram Soc 93:1586–1590

    CAS  Google Scholar 

  43. Zou X, Fu Q, Liu L et al (2013) ZrB2-SiC coating to protect carbon/carbon composites against ablation. Surf Coatings Technol 226:17–21

    CAS  Google Scholar 

  44. Haibo O, Cuiyan L, Jianfeng H et al (2016) Self-healing ZrB2–SiO2 oxidation resistance coating for SiC coated carbon/carbon composites. Corros Sci 110:265–272

    Google Scholar 

  45. Motojima S, Funahashi K, Kurosawa K (1990) ZrB2 coated on copper plate by chemical vapour deposition, and its corrosion and oxidation stabilities. Thin Solid Films 189:73–79

    CAS  Google Scholar 

  46. Lee D, Sim GD, Xiao K, Vlassak JJ (2014) Low-temperature synthesis of ultra-high-temperature coatings of ZrB2 using reactive multilayers. J Phys Chem C 118:21192–21198

    CAS  Google Scholar 

  47. Stewart DM, Meulenberg RW, Lad RJ (2015) Nanostructure and bonding of zirconium diboride thin films studied by X-ray spectroscopy. Thin Solid Films 596:155–159

    CAS  Google Scholar 

  48. Wang Q, Wang YL, Liu HJ, Zeng CL (2016) Electrochemical deposition of zirconium diboride coatings in NaCl-KCl-K2ZrF6-KBF4 melts. J Electrochem Soc 163:D636–D644

    CAS  Google Scholar 

  49. Berni A., Mennig M., Schmidt H. (2004) Doctor Blade. In: Aegerter M.A., Mennig M. (eds) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88953-5_10

    Google Scholar 

  50. Yang H, Jiang P (2010) Large-scale colloidal self-assembly by doctor blade coating. Langmuir 26:13173–13182

    CAS  PubMed  Google Scholar 

  51. Tran T-N, Huynh’ T-P, Hoanq’ T-T, et al (2009) Preparation of TiO2 thin film using modified doctor-blade method for improvement of dye-sensitized solar cell. Conference Record of the IEEE Photovoltaic Specialists Conference. https://doi.org/10.1109/PVSC.2009.5411405

  52. Basak A, Deka H, Mondal A, Singh UP (2018) Impact of post-deposition annealing in Cu2SnS3 thin film solar cells prepared by doctor blade method. Vacuum 156:298–301

    CAS  Google Scholar 

  53. Hiromoto S (2010) Corrosion of metallic biomaterials. In: Metals for Biomedical Devices. Elsevier, 2nd edition, pp 99–121

  54. Cardinale AM, Macciò D, Luciano G et al (2017) Thermal and corrosion behavior of as cast Al Si alloys with rare earth elements. J Alloys Compd 695:2180–2189

    CAS  Google Scholar 

  55. Di Maggio R, Fedrizzi L, Rossi S, Scardi P (1996) Dry and wet corrosion behaviour of AISI 304 stainless steel coated by sol-gel ZrO2-CeO2 films. Thin Solid Films 286:127–135

    Google Scholar 

  56. Wang Z, Zhao Q, Jing L et al (2016) Corrosion behavior of ZrB2–SiC–graphite ceramic in strong alkali and strong acid solutions. Ceram Int 42:2926–2932

    CAS  Google Scholar 

  57. Monticelli C, Zucchi F, Pagnoni A, Dal Colle M (2005) Corrosion of a zirconium diboride/silicon carbide composite in aqueous solutions. Electrochim Acta 50:3461–3469

    CAS  Google Scholar 

  58. Yang H, Zhang J, Li J et al (2018) Electrochemical corrosion behavior of zirconium diboride ceramic in concentrated alkaline solutions. Mater Res Express 5:126302

    Google Scholar 

  59. Revie RW, Robert W, Uhlig HH (2011) Uhlig’s corrosion handbook. ISBN: 978-0-470-08032-0, p-1296

  60. Lavrenko VO, Shvets VA, Talash VM et al (2012) Electrochemical oxidation of ZrB2–MoSi2 ceramics in a 3% NaCl solution. Powder Metall Met Ceram 50:749–753

    CAS  Google Scholar 

  61. Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy. John Wiley & Sons. p-560

Download references

Acknowledgements

All the authors thanks to DST and INST, and Mohali for providing the research facilities. Krishna, Sunaina and Ankush thanks CSIR-India for providing the fellowship to carry out their research work. SG thanks to the NTPC-Netra for providing the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashok K. Ganguli or Menaka Jha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K.K., Guchhait, S.K., Sunaina et al. Synthesis of zirconium diboride and its application in the protection of  stainless steel surface in harsh environment. J Solid State Electrochem 23, 3243–3253 (2019). https://doi.org/10.1007/s10008-019-04408-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04408-0

Keywords

Navigation