Skip to main content
Log in

Influence of calcium nitrate and sodium nitrate on strength development and properties in quicklime(CaO)-activated Class F fly ash system

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The single use of CaO has been regarded as relatively unsuccessful in fly ash activation when no other additives are used together, as it produces a considerably lower strength compared to other types of activators (e.g., alkaline activators). This study investigated two potential additives of nitrate compounds (i.e., Ca(NO3)2 and NaNO3) to improve the strength of a CaO-activated fly ash system. The results showed that the use of Ca(NO3)2 was greatly beneficial in the strength improvement of the binder system primarily due to the significant increase in (1) the dissolution degree of fly ash, (2) C–S–H formation, and (3) pore size refinement from early days; however, NaNO3 was much less advantageous in strength improvement, although it also aided in dissolving fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Snellings R (2016) Assessing, understanding and unlocking supplementary cementitious materials. RILEM Tech Lett 1:50–55. https://doi.org/10.21809/rilemtechlett.2016.12

    Article  Google Scholar 

  2. Bukhari SS, Behin J, Kazemian H, Rohani S (2015) Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 140:250–266. https://doi.org/10.1016/j.fuel.2014.09.077

    Article  Google Scholar 

  3. Provis JL (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct 47(1):11–25. https://doi.org/10.1617/s11527-013-0211-5

    Article  Google Scholar 

  4. Bakharev T (2005) Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem Concr Res 35(6):1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031

    Article  Google Scholar 

  5. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes. Cem Concr Res 29(8):1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  Google Scholar 

  6. Shi C, Day RL (2000) Pozzolanic reaction in the presence of chemical activators: Part I. Reaction kinetics. Cem Concr Res 30(1):51–58. https://doi.org/10.1016/S0008-8846(99)00205-7

    Article  Google Scholar 

  7. Shi C, Day RL (2000) Pozzolanic reaction in the presence of chemical activators: Part II. Reaction products and mechanism. Cem Concr Res 30(4):607–613. https://doi.org/10.1016/S0008-8846(00)00214-3

    Article  Google Scholar 

  8. Jeon D, Jun Y, Jeong Y, Oh JE (2015) Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cem Concr Res 67:215–225. https://doi.org/10.1016/j.cemconres.2014.10.001

    Article  Google Scholar 

  9. Li D, Chen Y, Shen J, Su J, Wu X (2000) The influence of alkalinity on activation and microstructure of fly ash. Cem Concr Res 30(6):881–886. https://doi.org/10.1016/S0008-8846(00)00252-0

    Article  Google Scholar 

  10. Giergiczny Z (2004) Effect of some additives on the reactions in fly ash-Ca(OH)2 system. J Therm Anal Calorim 76(3):747–754. https://doi.org/10.1023/B:JTAN.0000032259.80031.b2

    Article  Google Scholar 

  11. Fan Y, Yin S, Wen Z, Zhong J (1999) Activation of fly ash and its effects on cement properties. Cem Concr Res 29(4):467–472. https://doi.org/10.1016/S0008-8846(98)00178-1

    Article  Google Scholar 

  12. Shi C, Day RL (1995) Acceleration of the reactivity of fly ash by chemical activation. Cem Concr Res 25(1):15–21. https://doi.org/10.1016/0008-8846(94)00107-A

    Article  Google Scholar 

  13. Pradhan B (2014) Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Constr Build Mater 72:398–410. https://doi.org/10.1016/j.conbuildmat.2014.09.026

    Article  Google Scholar 

  14. Aggoun S, Cheikh-Zouaoui M, Chikh N, Duval R (2008) Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages. Constr Build Mater 22(2):106–110. https://doi.org/10.1016/j.conbuildmat.2006.05.043

    Article  Google Scholar 

  15. Chikh N, Cheikh-Zouaoui M, Aggoun S, Duval R (2008) Effects of calcium nitrate and triisopropanolamine on the setting and strength evolution of Portland cement pastes. Mater Struct 41(1):31–36. https://doi.org/10.1617/s11527-006-9215-8

    Article  Google Scholar 

  16. Berke NS, Hicks MC (2004) Predicting long-term durability of steel reinforced concrete with calcium nitrite corrosion inhibitor. Cem Concr Compos 26(3):191–198. https://doi.org/10.1016/S0958-9465(03)00038-6

    Article  Google Scholar 

  17. Ann KY, Jung HS, Kim HS, Kim SS, Moon HY (2006) Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cem Concr Res 36(3):530–535. https://doi.org/10.1016/j.cemconres.2005.09.003

    Article  Google Scholar 

  18. Çullu M, Arslan M (2014) The effects of chemical attacks on physical and mechanical properties of concrete produced under cold weather conditions. Constr Build Mater 57:53–60. https://doi.org/10.1016/j.conbuildmat.2014.01.072

    Article  Google Scholar 

  19. Karagol F, Demirboga R, Khushefati WH (2015) Behavior of fresh and hardened concretes with antifreeze admixtures in deep-freeze low temperatures and exterior winter conditions. Constr Build Mater 76:388–395. https://doi.org/10.1016/j.conbuildmat.2014.12.011

    Article  Google Scholar 

  20. Asaga K, Tsuchiya Y, Shimada N, Torii H (2006) Reaction between NO3   ion and 3CaO·Al2O3 in Aqueous Solutions with or without SO4 2− and Cl ions. AIP Conf Proc 833(1):190–195. https://doi.org/10.1063/1.2207103

    Article  Google Scholar 

  21. Balonis M, Mędala M, Glasser FP (2011) Influence of calcium nitrate and nitrite on the constitution of AFm and AFt cement hydrates. Adv Cem Res 23(3):129–143. https://doi.org/10.1680/adcr.10.00002

    Article  Google Scholar 

  22. Dumm JQ, Brown PW (1996) Phase assemblages in the system Ca(OH)2—Al2O3—Ca(NO3)2—H2O. Adv Cem Res 8(32):143–153. https://doi.org/10.1680/adcr.1996.8.32.143

    Article  Google Scholar 

  23. Renaudin G, Rapin JP, Humbert B, François M (2000) Thermal behaviour of the nitrated AFm phase Ca4Al2(OH)12(NO3)2•4H2O and structure determination of the intermediate hydrate Ca4Al2(OH)12(NO3)2•2H2O. Cem Concr Res 30(2):307–314. https://doi.org/10.1016/S0008-8846(99)00251-3

    Article  Google Scholar 

  24. Taylor HF (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

  25. Hill R, Daugherty K (1996) The interaction of calcium nitrate and a Class C fly ash during hydration. Cem Concr Res 26(7):1131–1143. https://doi.org/10.1016/0008-8846(96)00074-9

    Article  Google Scholar 

  26. ASTM (2015) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  27. Suh J-I, Jeon D, Yoon S, Oh JE, Park H-G (2017) Development of strong lightweight cementitious matrix for lightweight concrete simply by increasing a water-to-binder ratio in Ca(OH)2–Na2CO3-activated fly ash system. Constr Build Mater 152(Supplement C):444–455. https://doi.org/10.1016/j.conbuildmat.2017.07.011

    Article  Google Scholar 

  28. Oh JE, Jun Y, Jeong Y (2014) Characterization of geopolymers from compositionally and physically different Class F fly ashes. Cem Concr Compos 50:16–26. https://doi.org/10.1016/j.cemconcomp.2013.10.019

    Article  Google Scholar 

  29. PANalytical BV (2012) X’Pert HighScore Plus software. version 3.0e edn., Almelo, Netherlands

  30. ICDD (2000) PDF-2 Database. PA, USA

    Google Scholar 

  31. Shi C (1993) Activation of natural pozzolans, fly ashes and blast furnace slag. The University of Calgary, Ottawa

    Google Scholar 

  32. ASTM (2015) Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  33. ASTM (2014) Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  34. Zhang J, Scherer GW (2011) Comparison of methods for arresting hydration of cement. Cem Concr Res 41(10):1024–1036. https://doi.org/10.1016/j.cemconres.2011.06.003

    Article  Google Scholar 

  35. Song S, Jennings HM (1999) Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res 29(2):159–170. https://doi.org/10.1016/S0008-8846(98)00212-9

    Article  Google Scholar 

  36. Caruso F, Mantellato S, Palacios M, Flatt RJ (2017) ICP-OES method for the characterization of cement pore solutions and their modification by polycarboxylate-based superplasticizers. Cem Concr Res 91:52–60. https://doi.org/10.1016/j.cemconres.2016.10.007

    Article  Google Scholar 

  37. Allmann R, Hinek R (2007) The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Crystallogr Sect A: Found Crystallogr 63(5):412–417. https://doi.org/10.1107/S0108767307038081

    Article  Google Scholar 

  38. Feldman RF, Beaudoin JJ (1991) Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements. Cem Concr Res 21(2):297–308. https://doi.org/10.1016/0008-8846(91)90011-6

    Article  Google Scholar 

  39. Aligizaki KK (2006) Pore structure of cement-based materials: testing, interpretation and requrements. Taylor & Francis, London

    Google Scholar 

  40. O’Neil MJ (2013) The Merck index: an encyclopedia of chemicals, drugs, and biologicals. Merck and Co., Inc, RSC Publishing, Whitehouse Station, NJ

    Google Scholar 

  41. Rumble J (2017) CRC handbook of chemistry and physics, 98th edn. Taylor & Francis, Boca Raton

    Google Scholar 

  42. Biernacki JJ, Williams PJ, Paul ES (2001) Kinetics of reaction of calcium hydroxide and fly ash. ACI Mater J. https://doi.org/10.14359/10403

    Article  Google Scholar 

  43. Shi C (1998) Pozzolanic reaction and microstructure of chemical activated lime-fly ash pastes. ACI Mater J 95(5):1. https://doi.org/10.14359/396

    Article  Google Scholar 

  44. Mehta PK, Monteiro PJM (2006) Concrete: microstructure, properties, and materials. McGraw-Hill Publishing, New York

    Google Scholar 

  45. Bakolas A, Aggelakopoulou E, Moropoulou A, Anagnostopoulou S (2006) Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes. J Therm Anal Calorim 84(1):157–163. https://doi.org/10.1007/s10973-005-7262-y

    Article  Google Scholar 

  46. Wang S-D, Scrivener KL (1995) Hydration products of alkali activated slag cement. Cem Concr Res 25(3):561–571. https://doi.org/10.1016/0008-8846(95)00045-E

    Article  Google Scholar 

  47. Collier NC, Sharp JH, Milestone NB, Hill J, Godfrey IH (2008) The influence of water removal techniques on the composition and microstructure of hardened cement pastes. Cem Concr Res 38(6):737–744. https://doi.org/10.1016/j.cemconres.2008.02.012

    Article  Google Scholar 

  48. Frías Rojas M (2006) Study of hydrated phases present in a MK–lime system cured at 60 C and 60 months of reaction. Cem Concr Res 36(5):827–831. https://doi.org/10.1016/j.cemconres.2006.01.001

    Article  Google Scholar 

  49. Baquerizo Ibarra LG (2015) Impact of water activity on the mineralogy of hydrated cement. École polytechnique fédérale de Lausanne, Swiss

    Google Scholar 

  50. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860. https://doi.org/10.1016/j.cemconres.2008.01.002

    Article  Google Scholar 

  51. Schüth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley-Vch, Weinheim. https://doi.org/10.1002/9783527618286

    Article  Google Scholar 

  52. Richardson I, Girão A, Taylor R, Jia S (2016) Hydration of water-and alkali-activated white Portland cement pastes and blends with low-calcium pulverized fuel ash. Cem Concr Res 83:1–18. https://doi.org/10.1016/j.cemconres.2016.01.008

    Article  Google Scholar 

  53. Brus J, Abbrent S, Kobera L, Urbanova M, Cuba P (2016) Advances in 27Al MAS NMR Studies of Geopolymers. Annu Rep NMR Spectrosc 88:79–147. https://doi.org/10.1016/bs.arnmr.2015.11.001

    Article  Google Scholar 

  54. Andersen MD, Jakobsen HJ, Skibsted J (2006) A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 36(1):3–17. https://doi.org/10.1016/j.cemconres.2005.04.010

    Article  Google Scholar 

  55. Skibsted J, Henderson E, Jakobsen HJ (1993) Characterization of calcium aluminate phases in cements by aluminum-27MAS NMR spectroscopy. Inorg Chem 32(6):1013–1027. https://doi.org/10.1021/ic00058a043

    Article  Google Scholar 

  56. Yum WS, Jeong Y, Yoon S, Jeon D, Jun Y, Oh JE (2017) Effects of CaCl2 on hydration and properties of lime(CaO)-activated slag/fly ash binder. Cem Concr Compos 84(Supplement C):111–123. https://doi.org/10.1016/j.cemconcomp.2017.09.001

    Article  Google Scholar 

  57. Jeong Y, Park H, Jun Y, Jeong JH, Oh JE (2016) Influence of slag characteristics on strength development and reaction products in a CaO-activated slag system. Cem Concr Compos 72:155–167. https://doi.org/10.1016/j.cemconcomp.2016.06.005

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by research facilities from the Institute of Construction and Environmental Engineering at Seoul National University and the Institute of Engineering Research at Seoul National University. The authors gratefully acknowledge Se Jin Lee in the KBSI Jeonju Center for assistance with mercury intrusion porosimetry and Sin Ae Chae in the KBSI Western Seoul Center for assistance with the solid-state NMR experiments.

Funding

This study was supported by the Basic Science Research Programs (NRF-2016R1D1A1B03932908) through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Gun Park or Jae Eun Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, JI., Yum, W.S., Song, H. et al. Influence of calcium nitrate and sodium nitrate on strength development and properties in quicklime(CaO)-activated Class F fly ash system. Mater Struct 52, 115 (2019). https://doi.org/10.1617/s11527-019-1413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1413-2

Keywords

Navigation