Skip to main content
Log in

The re-swelling behavior of superabsorbent polymers (SAPs) in hardened cement paste with an artificial crack

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Re-swelling capacity is a key factor affecting the contribution of superabsorbent polymers (SAPs) to sealing cracks in concrete. In this paper, a new parameter (η), the ratio between the volume of the crack filled with the expansive SAPs and the volume of dry SAPs, is given to evaluate the re-swelling capacity of a single SAPs particle. Moreover, the influences of paste composition, solution properties, and crack width on the η value are studied by an innovative immersion test. The results show that the swollen volume ratio, the ratio of the swollen volume of SAPs during mixing to their dry volume, decreases with the reduction of the water-to-binder ratio and the addition of mineral admixtures. Furthermore, the swollen volume ratio, the solution properties, and the crack width have significant impacts on the η value. The η value rises with an increase in crack width (0.25–1 mm), revealing the restricting effects of cracks on the re-swelling capacity of SAPs. These results indicate that the paste composition, solution properties, and crack width should be considered when designing the self-sealing concrete containing SAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mignon A, Snoeck D, Dubruel P, Van Vlierberghe S, De Belie N (2017) Crack mitigation in concrete: Superabsorbent polymers as key to success? Materials 10(3):237–261. https://doi.org/10.3390/ma10030237

    Article  Google Scholar 

  2. Justs J, Wyrzykowski M, Bajare D, Lura P (2015) Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res 76:82–90. https://doi.org/10.1016/j.cemconres.2015.05.005

    Article  Google Scholar 

  3. Mechtcherine V, Schröfl C, Wyrzykowski M et al (2017) Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study. Mater Struct 50(1):14–32. https://doi.org/10.1617/s11527-016-0868-7

    Article  Google Scholar 

  4. Lee HXD, Wong HS, Buenfeld NR (2016) Self-sealing of cracks in concrete using superabsorbent polymers. Cem Concr Res 79:194–208. https://doi.org/10.1016/j.cemconres.2015.09.008

    Article  Google Scholar 

  5. Hong G, Choi S (2017) Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr Build Mater 143:366–375. https://doi.org/10.1016/j.conbuildmat.2017.03.133

    Article  Google Scholar 

  6. Snoeck D, Van den Heede P, Van Mullem T, De Belie N (2018) Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem Concr Res 113:86–98. https://doi.org/10.1016/j.cemconres.2018.07.002

    Article  Google Scholar 

  7. Van Tittelboom K, Wang J, Araújo M, Snoeck D, Gruyaert E, Debbaut B, Derluyn H et al (2016) Comparison of different approaches for self-healing concrete in a large-scale lab test. Constr Build Mater 107:125–137. https://doi.org/10.1016/j.conbuildmat.2015.12.186

    Article  Google Scholar 

  8. Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N (2013) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct 25(1):13–24. https://doi.org/10.1177/1045389x12438623

    Article  Google Scholar 

  9. Deng H, Liao G (2018) Assessment of influence of self-healing behavior on water permeability and mechanical performance of ECC incorporating superabsorbent polymer (SAP) particles. Constr Build Mater 170:455–465. https://doi.org/10.1016/j.conbuildmat.2018.03.094

    Article  Google Scholar 

  10. Snoeck D, de Belie N (2015) Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J Mater Civ Eng 28(1):04015086. https://doi.org/10.1061/(asce)mt.1943-5533.0001360

    Article  Google Scholar 

  11. Lee HXD, Wong HS, Buenfeld NR (2010) Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv Appl Ceram 109(5):296–302. https://doi.org/10.1179/174367609x459559

    Article  Google Scholar 

  12. Lee HXD, Wong HS, Buenfeld NR (2018) Effect of alkalinity and calcium concentration of pore solution on the swelling and ionic exchange of superabsorbent polymers in cement paste. Cem Concr Compos 88:150–164. https://doi.org/10.1016/j.cemconcomp.2018.02.005

    Article  Google Scholar 

  13. Hong G, Choi S (2018) Modeling rapid self-sealing of cracks in cementitious materials using superabsorbent polymers. Constr Build Mater 164:570–578. https://doi.org/10.1016/j.conbuildmat.2018.01.017

    Article  Google Scholar 

  14. Mechtcherine V, Secrieru E, Schröfl C (2015) Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars—development of yield stress and plastic viscosity over time. Cem Concr Res 67:52–65. https://doi.org/10.1016/j.cemconres.2014.07.003

    Article  Google Scholar 

  15. Snoeck D, Steuperaert S, Van Tittelboom K, Dubruel P, De Belie N (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem Concr Res 42(8):1113–1121. https://doi.org/10.1016/j.cemconres.2012.05.005

    Article  Google Scholar 

  16. Snoeck D, Dewanckele J, Cnudde V, De Belie N (2016) X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem Concr Compos 65:83–93. https://doi.org/10.1016/j.cemconcomp.2015.10.016

    Article  Google Scholar 

  17. Ferrara L, Van Mullem T, Alonso MC, Antonaci P, Borg RP, Cuenca E, Jefferson A et al (2018) Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: a state of the art report by COST Action SARCOS WG2. Constr Build Mater 167:115–142. https://doi.org/10.1016/j.conbuildmat.2018.01.143

    Article  Google Scholar 

  18. Schroefl C, Mechtcherine V, Vontobel P, Hovind J, Lehmann E (2015) Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration. Cem Concr Res 75:1–13. https://doi.org/10.1016/j.cemconres.2015.05.001

    Article  Google Scholar 

  19. Snoeck D, Schröfl C, Mechtcherine V (2018) Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (SAP) prior to implementation in cement-based materials. Mater Struct 51(5):116–121. https://doi.org/10.1617/s11527-018-1242-8

    Article  Google Scholar 

  20. Gartner EM, Tang FJ, Weiss SJ (1985) Saturation factors for calcium hydroxide and calcium sulfates in fresh Portland cement pastes. J Am Ceram Soc 68(12):667–673. https://doi.org/10.1111/j.1151-2916.1985.tb10122.x

    Article  Google Scholar 

  21. Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42(6):865–873. https://doi.org/10.1016/j.cemconres.2012.03.011

    Article  Google Scholar 

  22. Snoeck D, Jensen OM, De Belie N (2015) The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cem Concr Res 74:59–67. https://doi.org/10.1016/j.cemconres.2015.03.020

    Article  Google Scholar 

  23. Mechtcherine V, Reinhardt HW (eds) (2012) Application of superabsorbent polymers in concrete construction. In: State-of-the-art report prepared by the RILEM TC 225-SAP. Springer, Heidelberg. https://doi.org/10.1007/978-94-007-2733-5

  24. Snoeck D, Schaubroeck D, Dubruel P, De Belie N (2014) Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr Build Mater 72:148–157. https://doi.org/10.1016/j.conbuildmat.2014.09.012

    Article  Google Scholar 

  25. Ghods P, Isgor OB, McRae GA, Li J, Gu GP (2011) Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar. Corros Sci 53(3):946–954. https://doi.org/10.1016/j.corsci.2010.11.025

    Article  Google Scholar 

  26. Pourjavadi A, Fakoorpoor SM, Hosseini P, Khaloo A (2013) Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cem Concr Compos 37:196–204. https://doi.org/10.1016/j.cemconcomp.2012.10.005

    Article  Google Scholar 

  27. Horkay F, Tasaki I, Basser PJ (2000) Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 1(1):84–90. https://doi.org/10.1021/bm9905031

    Article  Google Scholar 

  28. Kang S, Hong S, Moon J (2018) Importance of monovalent ions on water retention capacity of superabsorbent polymer in cement-based solutions. Cem Concr Compos 88:64–72. https://doi.org/10.1016/j.cemconcomp.2018.01.015

    Article  Google Scholar 

  29. Siriwatwechakul W, Siramanont J, Vichit-Vadakan W (2012) Behavior of superabsorbent polymers in calcium-and sodium-rich solutions. J Mater Civ Eng 24(8):976–980. https://doi.org/10.1061/(asce)mt.1943-5533.0000449

    Article  Google Scholar 

  30. Kang S, Hong S, Moon J (2017) Absorption kinetics of superabsorbent polymers (SAP) in various cement-based solutions. Cem Concr Res 97:73–83. https://doi.org/10.1016/j.cemconres.2017.03.009

    Article  Google Scholar 

  31. Bensted J (1983) Early hydration of portland cement—effects of water/cement ratio. Cem Concr Res 13(4):493–498. https://doi.org/10.1016/0008-8846(83)90007-8

    Article  Google Scholar 

  32. Elliott M (2004) Superabsorbent polymers. Product development scentist for SAP BASF Aktiengesellschaft

  33. Li L, Nam J, Hartt WH (2005) Ex situ leaching measurement of concrete alkalinity. Cem Concr Res 35(2):277–283. https://doi.org/10.1016/j.cemconres.2004.04.024

    Article  Google Scholar 

  34. Jensen OM, Hansen PF (2002) Water-entrained cement-based materials. II. Experimental observations. Cem Concr Res 32:973–978. https://doi.org/10.1016/s0008-8846(02)00737-8

    Article  Google Scholar 

  35. Esteves LP (2011) Superabsorbent polymers: on their interaction with water and pore fluid. Cem Concr Compos 33(7):717–724. https://doi.org/10.1016/j.cemconcomp.2011.04.006

    Article  Google Scholar 

  36. Ma X, Yuan Q, Liu J, Shi C (2019) Effect of water absorption of SAP on the rheological properties of cement-based materials with ultra-low w/b ratio. Constr Build Mater 195:66–74. https://doi.org/10.1016/j.conbuildmat.2018.11.050

    Article  Google Scholar 

  37. Olawuyi BJ, Boshoff WP (2017) Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis. Constr Build Mater 135:580–589. https://doi.org/10.1016/j.conbuildmat.2016.12.128

    Article  Google Scholar 

  38. Yang Y, Lepech MD, Yang E, Li VC (2009) Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem Concr Res 39(5):382–390. https://doi.org/10.1016/j.cemconres.2009.01.013

    Article  Google Scholar 

  39. Yang Y, Yang E, Li VC (2011) Autogenous healing of engineered cementitious composites at early age. Cem Concr Res 41(2):176–183. https://doi.org/10.1016/j.cemconres.2010.11.002

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Key Research and Development Program of China (2016YFC0600803). Special thanks to Dr. Yanpeng Xue for his support in language embellishment and some suggestions for revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanhong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 517 kb)

Supplementary material 2 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, J., Zhou, Q. et al. The re-swelling behavior of superabsorbent polymers (SAPs) in hardened cement paste with an artificial crack. Mater Struct 52, 103 (2019). https://doi.org/10.1617/s11527-019-1394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1394-1

Keywords

Navigation