Skip to main content

Advertisement

Log in

A Review on Recent Trends and Future Prospects of Lignin Based Green Rubber Composites

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the last two decades, the utilization of non-petroleum based renewable materials on the development of advanced rubber composites has attracted increasing attention of polymer researchers from both industrial and environmental viewpoints. Recently, lignin has emerged as promising non-petroleum based filler in the progress of green rubber technology. This review article aims to present the recent advances of lignin based natural and synthetic rubber composites. The potential of lignin as alternative reinforcing filler in rubber technology is critically evaluated in terms of cure, mechanical, dynamic mechanical and thermal properties. The dispersion of lignin within the rubber matrix is the key parameter that decides the overall performances of lignin based rubber composites. The last section of the review will emphasize the major challenges regarding the broad application of lignin as reinforcing filler in rubber industry. This study will be the part of huge interest of modern rubber researchers concerning the utilization of lignin for the development of non-petroleum based renewable and sustainable rubber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from Argyropoulos et al. [11]

Fig. 3

Reprinted from Ikeda et al. [21]

Fig. 4

Reprinted from Ikeda et al. [21]

Fig. 5

Reprinted from Ikeda et al. [21]

Fig. 6

Reprinted from Zoia et al. [19]

Fig. 7

Reprinted from Datta et al. [32]

Fig. 8

Reprinted from Datta et al. [32]

Fig. 9
Fig. 10

Reprinted from He et al. [36]

Fig. 11

Reprinted from He et al. [36]

Fig. 12

Reprinted from He et al. [36]

Fig. 13
Fig. 14

Reprinted from He et al. [37]

Fig. 15
Fig. 16

Reprinted from He et al. [24]

Fig. 17
Fig. 18

Reprinted from He et al. [41]

Fig. 19
Fig. 20

Reprinted from He et al. [20]

Similar content being viewed by others

References

  1. Basu D, Das A, Stöckelhuber KW, Wagenknecht U, Heinrich G (2014) Prog Polym Sci 39:594

    CAS  Google Scholar 

  2. Srirachya N, Kobayashi T, Roy K, Boonkerd K (2018) J Elastom Plast. https://doi.org/10.1177/0095244318790616

    Article  Google Scholar 

  3. Tang Z, Zhang C, Wei Q, Weng P, Guo B (2016) Compos Sci Technol 132:93

    CAS  Google Scholar 

  4. The Composition of a Tyre: Typical Components, Anne & Russ Evans (2006), http://www.wrap.org.uk/sites/files/wrap/2%20-%20Composition%20of%20a%20Tyre%20-%20May%202006.pdf. Accessed 25 Mar 2014

  5. Chen WJ, Gu J, Xu SH (2014) Express Polym Lett 8:659

    CAS  Google Scholar 

  6. Li MC, Zhang Y, Cho UR (2014) Mater Des 63:565

    CAS  Google Scholar 

  7. Huang X, Netravali A (2009) Compos Sci Technol 69:1009

    CAS  Google Scholar 

  8. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) IPCC, 2007. Climate Change 2007: The physical science basis. Contribution of working group I to the Fourth assessment report of the intergovernmental panel on climate, Cambridge University Press, Cambridge, p 97

  9. Naseem A, Tabasum S, Zia KM, Zuber M, Ali M, Noreen A (2016) Int J Biol Macromol 93:296

    CAS  PubMed  Google Scholar 

  10. Khan A, Nair V, Colmenares JC, Gläser R (2018) Top Curr Chem (Z) 376:20

    CAS  Google Scholar 

  11. Sen S, Patil S, Argyropoulos DS (2015) Green Chem 17:4862

    CAS  Google Scholar 

  12. Dias OAT, Negrão DR, Gonçalves DFC, Cesarino I, Leão AL (2017) Mol Cryst Liq Cryst 655:204

    CAS  Google Scholar 

  13. Upton BM, Kasko AM (2016) Chem Rev 116:2275

    CAS  PubMed  Google Scholar 

  14. Argyropoulos DS, Sadeghifar H, Cui C, Sen S (2014) ACS Sustain Chem Eng 2:264

    CAS  Google Scholar 

  15. Setua DK, Shukla MK, Nigam V, Singh H, Mathur GN (2000) Polym Compos 21:988

    CAS  Google Scholar 

  16. Košíková B, Gregorova A (2005) J Appl Polym Sci 97:924

    Google Scholar 

  17. Košíková B, Kovalcik A, Osvald A, Krajčovičová J (2007) J Appl Polym Sci 103:1226

    Google Scholar 

  18. Datta J, Parcheta P, Surówka J (2017) Ind Crop Prod 95:675

    CAS  Google Scholar 

  19. Barana D, Ali SD, Salanti A, Orlandi M, Castellani L, Hanel T, Zoia L (2016) ACS Sustain Chem Eng 4:5258

    CAS  Google Scholar 

  20. Yu P, He H, Jia Y, Tian S, Chen J, Jia D, Luo Y (2016) Polym Test 54:176

    CAS  Google Scholar 

  21. Ikeda Y, Phakkeeree T, Junkong P, Yokohama H, Phinyocheep P, Kitano R, Kato A (2017) RSC Adv 7:5222

    CAS  Google Scholar 

  22. Jiang C, He H, Jiang H, Ma L, Jia DM (2013) Express Polym Lett 7:480

    CAS  Google Scholar 

  23. Xiao S, Feng J, Zhu J, Wang X, Yi C, Su S (2013) J Appl Polym Sci 130:1308

    CAS  Google Scholar 

  24. Jiang C, He H, Yu P, Wang DK, Zhou L, Jia DM (2014) Express Polym Lett 8:619

    CAS  Google Scholar 

  25. Bahl K, Jana SC (2014) J Appl Polym Sci 131:40123

    Google Scholar 

  26. Smitthipong W, Suethao S, Shah D, Vollrath F (2016) Polym Test 55:17

    CAS  Google Scholar 

  27. Masłowski M, Miedzianowska J, Strzelec K (2017) Polym Test 63:84

    Google Scholar 

  28. Phakkeeree T, Ikeda Y, Yokohama H, Phinyocheep P, Kitano R, Kato A (2016) J Fiber Sci Technol 72:160

    Google Scholar 

  29. Goh SH (1984) Thermochim Acta 75:323

    CAS  Google Scholar 

  30. Ignatz-Hoover F, To BH, Datta N, De Hoog AJ, Huntink NM, Talma AG (2003) Rubber Chem Technol 76:747

    CAS  Google Scholar 

  31. Ge X, Li MC, Cho UR (2015) Polym Compos 36:1693

    CAS  Google Scholar 

  32. Datta J, Parcheta P (2017) Iran Polym J 26:453

    CAS  Google Scholar 

  33. Pillai KV, Renneckar S (2009) Biomacromol 10:798

    CAS  Google Scholar 

  34. Yang D, Rochette J, Sacher E (2005) J Phys Chem B 109:4481

    CAS  PubMed  Google Scholar 

  35. John S, Issac JM, Alex R (2014) Int J Emerg Technol Adv Eng 4:567

    Google Scholar 

  36. Jiang C, He H, Yao X, Yu P, Zhou L, Jia D (2014) J Appl Polym Sci 131:41166

    Google Scholar 

  37. Jiang C, He H, Yao X, Yu P, Zhou L, Jia D (2015) J Appl Polym Sci 132:42044

    Google Scholar 

  38. Luginsland H, Frohlich J, Wehmeier A (2002) Rubber Chem Technol 75:563

    CAS  Google Scholar 

  39. Barrios VAE, Garcia-Ramirez M (2003) Int J Polym Mater 52:985

    Google Scholar 

  40. Toki S, Sics I, Ran S, Liu L, Hsiao BS, Murakami S, Senoo K, Kohjiya S (2002) Macromolecules 35:6578

    CAS  Google Scholar 

  41. Yu P, He H, Jiang C, Wang D, Jia Y, Zhou L, Jia DM (2015) Express Polym Lett 9:36

    CAS  Google Scholar 

  42. Chen W, Wu S, Lei Y, Liao Z, Guo B, Liang X, Jia D (2011) Polymer 52:4387–4395

    CAS  Google Scholar 

  43. Laskowska A, Zaborski M, Boiteux G, Gain O, Marzec A, Maniukiewicz W (2014) Express Polym Lett 8:374

    CAS  Google Scholar 

  44. Lin J, Wu X, Zheng C, Zhang P, Li Q, Wang W, Yang Z (2014) J Polym Res 21:435

    Google Scholar 

  45. Liu YB, Li L, Wang Q (2010) Plast, Rubber Compos 39:370

    CAS  Google Scholar 

  46. Avalos F, Ortiz JC, Zitzumbo R, Loez-Manchando MA, Verdejo R, Arroyo M (2008) Eur Polym J 44:3108

    CAS  Google Scholar 

  47. Kumaran MG, De SK (1978) J Appl Polym Sci 22:1885

    CAS  Google Scholar 

  48. Liao Z, Wang X, Xu Y, Feng J, Zhu J, Su S (2012) Polym Adv Technol 23:1051

    CAS  Google Scholar 

  49. Cao Z, Liao Z, Wang X, Su S, Feng J, Zhu J (2013) J Appl Polym Sci 127:3725

    CAS  Google Scholar 

  50. Song M, Wong C, Jin J, Ansarifar A, Zhang Z, Richardson M (2002) Polym Int 54:560

    Google Scholar 

  51. Artzi N, Nir Y, Narkis M, Siegmann A (2002) J Polym Sci B 40:1741

    CAS  Google Scholar 

  52. Kramarova Z, Alexy P, Chodak I, Spirk E, Hudec I, Kosikova B, Gregorova A, Suri P, Feranc J, Bugaj P (2007) Polym Adv Technol 18:135

    CAS  Google Scholar 

  53. Agarwal K, Prasad M, Sharma RB, Setua DK (2014) Int J Energy Eng 4:47

    Google Scholar 

  54. Bahl K, Miyoshi T, Jana SC (2014) Polymer 55:3825

    CAS  Google Scholar 

  55. Wu YP, Jia QX, Yu DS, Zhang LQ (2004) Polym Test 23:903

    CAS  Google Scholar 

  56. Rosu L, Cascaval CN, Rosu D (2009) Polym Test 28:296

    CAS  Google Scholar 

  57. Gregorová A, Košíková B, Moravčík R (2006) Polym Degrad Stab 91:229

    Google Scholar 

  58. Hussin MH, Rahim AA, Mohamad Ibrahim MN, Yemloul M, Perrin D, Brosse N (2014) Ind Crops Prod 52:544

    CAS  Google Scholar 

  59. Kumaran M, Mukhopadhyay R, De SK (1979) J Polym Sci Polym Lett Ed 17:399

    CAS  Google Scholar 

  60. Sarkawi SS, Aziz AKC, Rahim RA, Ghani RA, Kamaruddin AN (2016) Polym Polym Compos 24:775

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Kumarjyoti Roy would like to thank senior postdoctoral fellowship supported by Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University for fellowship assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranut Potiyaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K., Debnath, S.C. & Potiyaraj, P. A Review on Recent Trends and Future Prospects of Lignin Based Green Rubber Composites. J Polym Environ 28, 367–387 (2020). https://doi.org/10.1007/s10924-019-01626-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01626-5

Keywords

Navigation