Skip to main content
Log in

The Effect of Filler Loading and Silane Treatment on Kenaf Core Reinforced Polyurethane Composites: Mechanical and Thermal Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This investigation was aimed to study the mechanical and the thermal properties behavior of kenaf core (untreated and treated with silane)–polyurethane composites. Three different types of silane coupling agent were used to treat kenaf core (KC) which were, trimethoxyphenylsilane (TMPS), vinyltrimethoxysilane (VTMS), and tetramethoxyl orthosilicate (TMOS). The concentration of silane was varied from 0 to 3%. Silanization of KC filler is measured by the weight percentage gain (WPG), scanning electron microscopy and energy dispersive X-ray analysis. Kenaf core–polyurethane (KCP) composites were prepared using a one-shot process. Tensile, flexural and thermogravimetric analysis was carried out it to study mechanical and thermal properties of the KCP. Among the three types of silane, the most effective one for property improvement was TMPS. The results from TMPS showed tensile and flexural agreed to each other that TMPS was the suitable chemical to be used as a coupling agent for KC filler in the preparation of KCP composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Senthilkumar K, Saba N, Rajini N et al (2018) Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr Build Mater 174:713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143

    Article  CAS  Google Scholar 

  2. Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 79:558–584. https://doi.org/10.1016/j.rser.2017.05.094

    Article  Google Scholar 

  3. George M, Chae M, Bressler DC (2016) Composite materials with bast fibres: structural, technical, and environmental properties. Prog Mater Sci 83:1–23. https://doi.org/10.1016/j.pmatsci.2016.04.002

    Article  CAS  Google Scholar 

  4. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162. https://doi.org/10.1080/15583724.2014.971124

    Article  CAS  Google Scholar 

  5. Tezara C, Siregar JP, Lim HY et al (2016) Factors that affect the mechanical properties of kenaf fiber reinforced polymer: a review. J Mech Eng Sci (JMES) 10:2159–2175

    CAS  Google Scholar 

  6. Feng J, Venna SR, Hopkinson DP (2016) Interactions at the interface of polymer matrix–filler particle composites. Polymer (United Kingdom) 103:189–195. https://doi.org/10.1016/j.polymer.2016.09.059

    Article  CAS  Google Scholar 

  7. Plueddemann EP (2016) Interfaces in polymer matrix composites: composite materials. Elsevier, Amsterdam

    Google Scholar 

  8. Ben S, Zhao J, Zhang Y et al (2015) The interface strength and debonding for composite structures: review and recent developments. Compos Struct 129:8–26. https://doi.org/10.1016/j.compstruct.2015.03.036

    Article  Google Scholar 

  9. Karger-Kocsis J, Mahmood H, Pegoretti A (2015) Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci 73:1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003

    Article  CAS  Google Scholar 

  10. Mohammed L, Ansari MNM, Pua G et al (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  11. Asim M, Jawaid M, Abdan K, Ishak MR (2016) Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bionic Eng 13:426–435. https://doi.org/10.1016/S1672-6529(16)60315-3

    Article  Google Scholar 

  12. Datta J, Kopczyńska P (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind Crops Prod 74:566–576. https://doi.org/10.1016/j.indcrop.2015.05.080

    Article  CAS  Google Scholar 

  13. Prabhu L, Krishnaraj V, Gokulkumar S et al (2019) Mechanical, chemical and acoustical behavior of sisal-tea waste-glass fiber reinforced epoxy based hybrid polymer composites. Mater Today 16:653–660. https://doi.org/10.1016/j.matpr.2019.05.142

    Article  CAS  Google Scholar 

  14. Chan CH, Chia CH, Zakaria S et al (2013) Production and characterisation of cellulose and nano- crystalline cellulose from kenaf core wood. BioResources 8:785–794. https://doi.org/10.15376/biores.8.1.785-794

    Article  Google Scholar 

  15. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  16. Faruk O, Bledzki AK, Fink H-P, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008

    Article  CAS  Google Scholar 

  17. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Progr Mater Sci. https://doi.org/10.1016/j.pmatsci.2015.11.001

    Article  Google Scholar 

  18. Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2013.12.054

    Article  Google Scholar 

  19. Jiang S, Li Q, Zhao Y et al (2015) Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos Sci Technol 110:87–94. https://doi.org/10.1016/j.compscitech.2015.01.022

    Article  CAS  Google Scholar 

  20. Ifuku S, Yano H (2015) Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. Int J Biol Macromol 74:428–432

    Article  CAS  Google Scholar 

  21. Mori R (2015) Inorganic–organic hybrid biodegradable polyurethane resin derived from liquefied Sakura wood.pdf. Wood Sci Technol 49:507–516. https://doi.org/10.1007/s00226-015-0707-y

    Article  CAS  Google Scholar 

  22. Xie Y, Hill CAS, Sun D et al (2011) Effects of dynamic aging (hydrolysis and condensation) behaviour of organofunctional silanes in the aqueous solution on their penetrability into the cell walls of wood. BioResources 6:2323–2339

    CAS  Google Scholar 

  23. Brochier Salon MC, Belgacem MN (2010) Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group. Colloids Surf A 366:147–154. https://doi.org/10.1016/j.colsurfa.2010.06.002

    Article  CAS  Google Scholar 

  24. Gonzalez D, Santos V, Parajo JC (2011) Silane-treated lignocellulosic fibers as reinforcement material in polylactic acid biocomposites. J Thermoplast Compos Mater 25:1005–1022. https://doi.org/10.1177/0892705711417029

    Article  CAS  Google Scholar 

  25. Witucki GL (1993) A silane primer: chemistry and applications of alkoxy silanes. J Coatings Technol 65:57–60. https://doi.org/10.1124/dmd.109.028449

    Article  CAS  Google Scholar 

  26. Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273:505–511. https://doi.org/10.1016/j.jcis.2003.09.044

    Article  CAS  PubMed  Google Scholar 

  27. Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819. https://doi.org/10.1016/j.compositesa.2010.03.005

    Article  CAS  Google Scholar 

  28. Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38:555–566. https://doi.org/10.1007/s00226-004-0257-1

    Article  CAS  Google Scholar 

  29. Tay GS, Rozman HD (2008) Swelling properties of chemically modified oil palm empty fruit bunch based polyurethane composites. J Appl Polym Sci 108:995–1004. https://doi.org/10.1002/app.27598

    Article  CAS  Google Scholar 

  30. Rozman HD, Musa L, Abubakar A (2005) Rice husk–polyester composites: the effect of chemical modification of rice husk on the mechanical and dimensional stability properties. J Appl Polym Sci 97:1237–1247

    Article  CAS  Google Scholar 

  31. Tay GS, Abusamah A, Rozman HD (2003) Tensile properties of oil palm empty fruit bunch (EFB)-polyurethane (PU) composites: The effect of NCO/OH ratio, glycol type and glycol mixture. malaysian science and technology congress. Malaysia: Regional Hub for S&T Exellence

  32. Yusoff Z, Mohamad Z (2015) Review of research activities on kenaf reinforced. J Petrochem Eng Dep 1:25–33

    Google Scholar 

  33. Ho M, Wang H, Lee J-H et al (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B 8:3549–3562. https://doi.org/10.1016/j.compositesb.2011.10.001

    Article  CAS  Google Scholar 

  34. Khalid NHA, Yatim Jamaludin Mohamad, Hafizah N et al (2015) Tensile behavior of the treated and untreated kenaf fibers. Int J Polym Sci 2015:1–8. https://doi.org/10.1155/2015/894565

    Article  CAS  Google Scholar 

  35. Marcovich NE, Aranguren MI, Reboredo MM (2001) Modified woodflour as thermoset fillers. Part I. Effect of the chemical modification and percentage of filler on the mechanical properties. Polymer 42:815–825. https://doi.org/10.1016/S0032-3861(00)00286-X

    Article  CAS  Google Scholar 

  36. Sever K, Sarikanat M, Seki Y et al (2010) The mechanical properties of γ-methacryloxypropyltrimethoxy silane-treated jute/polyester composites. J Compos Mater 44:1913–1924

    Article  CAS  Google Scholar 

  37. Valadez-Gonzalez A, Cervantes-Uc J, Olayo R, Herrera-Franco P (1999) Chemical modification of henequén fibers with an organosilane coupling agent. Compos B 30:321–331. https://doi.org/10.1016/S1359-8368(98)00055-9

    Article  Google Scholar 

Download references

Funding

Funding was provided by Universiti Sains Malaysia (Grant No. 1001/PKT/8640011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Tay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizah, A.B., Rozman, H.D., Azniwati, A.A. et al. The Effect of Filler Loading and Silane Treatment on Kenaf Core Reinforced Polyurethane Composites: Mechanical and Thermal Properties. J Polym Environ 28, 517–531 (2020). https://doi.org/10.1007/s10924-019-01623-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01623-8

Keywords

Navigation