Skip to main content

Advertisement

Log in

Polyvinyl Alcohol (PVA)–Azadirachta indica (Neem) Nanofibrous Mat for Biomedical Application: Formation and Characterization

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study provides credence to the formation of polyvinyl alcohol (PVA)–Azadirachta indica (neem) nanofibrous mat (PNNM) under optimum processing conditions of electrospinning technique from a mixer of PVA and neem extract to utilize the inherent medicinal properties of this herb for biomedical application. The bonding behavior, orientation of fibers, thermal behavior, and moisture management properties were evaluated by Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA) and moisture management tester (MMT) reports respectively. The antibacterial activity of the developed sample at the maximum mixing ratio of neem extract (80%) was tested against Gram-positive (S. aureus) bacteria using agar disc diffusion method. The results reveal that the prepared nanofibrous mat exhibited better thermal and moisture management properties in comparison with PVA nanofiber alone. The formation of smooth fibers was confirmed by SEM images having average diameter of 185 nm under 5k, 10k and 15k magnifications. The characteristic peaks of PVA and neem constituents in FTIR spectra of the developed mat confirmed the presence of both components. Bacterial resistance was reached up to 20 mm due to the antibacterial constituents of neem extract. Thus the developed mat could be used as a biocompatible and bio based in biomedical applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guarino V, Ambrosio L (2018) Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices: principles and advances. Woodhead Publishing, Sawston

    Google Scholar 

  2. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Google Scholar 

  3. Huang Z-X, Wu J-W, Wong S-C, Qu J-P, Srivatsan T (2018) The technique of electrospinning for manufacturing core–shell nanofibers. Mater Manuf Processes 33(2):202–219

    CAS  Google Scholar 

  4. Abdullah N, Sekak KA, Ahmad M, Effendi TB (eds) (2014) Characteristics of electrospun PVA-Aloe vera nanofibres produced via electrospinning. Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014). Springer

  5. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    CAS  Google Scholar 

  6. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    CAS  PubMed  Google Scholar 

  7. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27(3):504–509

    CAS  Google Scholar 

  8. Barhate R, Loong CK, Ramakrishna S (2006) Preparation and characterization of nanofibrous filtering media. J Membr Sci 283(1–2):209–218

    CAS  Google Scholar 

  9. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S (2008) Nanobioengineered electrospun mat nanofibers and osteoblasts for bone regeneration. Artif Organs 32(5):388–397

    CAS  PubMed  Google Scholar 

  10. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241

    CAS  Google Scholar 

  11. Zhan Y, Zhao R, Xiang X, He S, Zhao S, Xue W (2019) Hierarchical core/shell bamboo-like polypyrrole nanofibers/Fe3O4 hybrids with superior microwave absorption performance. Mat Interfaces. 26:1–14

    Google Scholar 

  12. Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY (2004) Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25(13):2595–2602

    CAS  PubMed  Google Scholar 

  13. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032

    CAS  PubMed  Google Scholar 

  14. Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Lim KHC, Ramakrishna S (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814

    CAS  PubMed  Google Scholar 

  15. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15

    CAS  Google Scholar 

  16. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95

    CAS  Google Scholar 

  17. Fayemi OE, Ekennia AC, Katata-Seru L, Ebokaiwe AP, Ijomone OM, Onwudiwe DC et al (2018) Antimicrobial and wound healing properties of polyacrylonitrile-moringa extract nanofibers. ACS Omega 3(5):4791–4797

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Avci H, Monticello R, Kotek R (2013) Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. J Biomater Sci Polym Ed 24(16):1815–1830

    CAS  PubMed  Google Scholar 

  19. Mahendran R, Sridharan D, Arunmozhidevan C, Selvakumar T, Rajasekar P (2016) Fabrication and antibacterial effects of polycarbonate/leaf extract based thin films. J Mater. https://doi.org/10.1155/2016/3194154

    Article  Google Scholar 

  20. Sridhar R, Ravanan S, Venugopal JR, Sundarrajan S, Pliszka D, Sivasubramanian S et al (2014) Curcumin-and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: in vitro efficacy evaluation. J Biomater Sci Polym Ed 25(10):985–998

    CAS  PubMed  Google Scholar 

  21. Chinchillas-Chinchillas MJ et al (2019) Synthesis of recycled poly (ethylene terephthalate)/polyacrylonitrile/styrene composite nanofibers by electrospinning and their mechanical properties evaluation. J Polym Environ 27(3):659–669

    CAS  Google Scholar 

  22. Kawano A et al (2019) Preparation of chitin nanofiber-reinforced xanthan gum hydrogels. J Polym Environ 27(4):671–677

    CAS  Google Scholar 

  23. Kummer G et al (2018) Development of nanofibers composed of chitosan/nylon 6 and tannin/nylon 6 for effective adsorption of Cr(VI). J Polym Environ 26(10):4073–4084

    CAS  Google Scholar 

  24. Mokhtari-Shourijeh Z, Montazerghaem L, Olya M (2018) Preparation of porous nanofibers from electrospun polyacrylonitrile/polyvinylidene fluoride composite nanofibers by inexpensive salt using for dye adsorption. J Polym Environ 26:3550–3563

    CAS  Google Scholar 

  25. Pereao O et al (2019) Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal. J Polym Environ 27:1–18

    Google Scholar 

  26. Sargazi G et al (2018) Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning. J Polym Environ 26(5):1804–1817

    CAS  Google Scholar 

  27. Sato K, Yamamoto K, Kadokawa J-I (2018) Preparation of cationic/anionic chitin nanofiber composite materials. J Polym Environ 26(9):3540–3549

    CAS  Google Scholar 

  28. Shekh MI, Patel KP, Patel RM (2018) Electrospun ZnO nanoparticles doped core-sheath nanofibers: characterization and antimicrobial properties. J Polym Environ 26(12):4376–4387

    CAS  Google Scholar 

  29. Salam R, Khokon J, Mussa SBM (2014) Effect of neem and betel leaf against oral bacteria. Int J Nat Soc Sci 1:52–57

    Google Scholar 

  30. Subapriya R, Nagini S (2005) Medicinal properties of neem leaves: a review. Curr Med Chem 5(2):149–156

    CAS  Google Scholar 

  31. Atal CK, Kapur B (1982) Cultivation and utilization of medicinal plants. University of Michigan, Ann Arbor

    Google Scholar 

  32. Devakumar C, Dev S, Randhawa N, Parmar B (1993) Neem research and development. Society of Pesticide Science, Delhi

    Google Scholar 

  33. Randhawa N, Parmar B (1993) Neem: research and development. Neem: research and development

  34. Tesso H, Nisha A, Kumsa K (2015) Antibacterial activity and phytochemical screening of some important medicinal plants against human diarrheal pathogens in Adama city, Ethiopia. Int J Microbiol Immunol Res 3(3):029–035

    Google Scholar 

  35. Vijayaram S, Kannan S, Saravanan KM, Vasantharaj S, Sathiyavimal S, Palanisamy SP (2016) Preliminary phytochemical screening, Antibacterial potential and GCMS analysis of two medicinal plant extracts. Pak J Pharm Sci 29(3):819–822

    PubMed  Google Scholar 

  36. Chattopadhyay D, Chawla-Sarkar M, Chatterjee T, Dey RS, Bag P, Chakraborti S et al (2009) Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnol 25(5):347–368

    CAS  Google Scholar 

  37. Dhakal S, Aryal P, Aryal S, Bashyal D, Khadka D (2016) Phytochemical and antioxidant studies of methanol and chloroform extract from leaves of Azadirachta indica A. Juss in Tropical region of Nepal. J Pharm Phytother. 8(12):203–208

    CAS  Google Scholar 

  38. Nayak A, Nayak R, Soumya B, Bhat K, Kudalkar M (2011) Evaluation of antibacterial and anticandidial efficacy of aqueous and alcoholic extract of Neem (Azadirachta indica) an in vitro study. Int J Res Ayurveda Pharm 2:230–235

    Google Scholar 

  39. Neeta P, Pankaj M (2016) Antibacterial study of neem patra extracts on Escherichia coli, Pseudomonas aeuroginosa, Corynebacteria, Staphylococcus aureus and Staphylococcus epidermidis—AN in vitro study. International Journal Of Ayurvedic And Herbal Medicine. 6(3):2248–2251

    Google Scholar 

  40. Priadarshini A, Pankaj PP, Varma M, Kumar K (2013) Evaluation of the antibacterial potential of Moringa oleifera and Azadirachta indica against some pathogenic microbes: a comparative study. Int J Drug Dev Res 5(1):214–218

    Google Scholar 

  41. Amin A (2011) In vitro bactericidal and bacteriostatic potential of ingredients of traditional medicine obtained from Kacha area (River Indus) district DI Khan, KPK, against human bacterial pathogens. Pak J Bot 43(5):26137

    Google Scholar 

  42. Azmir J, Zaidul I, Rahman M, Sharif K, Mohamed A, Sahena F et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436

    CAS  Google Scholar 

  43. Lall WS, Charan AA, Bind A (2013) Antimicrobial activity of methanolic and acetonic extracts of Azadirachta indica, Saraca asoca and Curcuma longa. Int J Med Pharm Sci 3(2):79–86

    Google Scholar 

  44. Tirumalasetty J, Anuradha B, Praveena A (2014) Antimicrobial activity of methanolic extracts of Azadirachta indica, Rosmarinus officinalis and Lagenaria siceraria leaves on some important pathogenic organisms. J Chem Pharm Res 6:766–770

    Google Scholar 

  45. Asif M (2012) Antimicrobial potential of Azadirachta indica against pathogenic bacteria and fungi. J Pharmacogn Phytochem. 1(4):78–83

    Google Scholar 

  46. Chundran NK, Husen IR, Rubianti I (2015) Effect of neem leaves extract (Azadirachta indica) on wound healing. Althea Med J 2(2):199–203

    Google Scholar 

  47. Saradhajyothi K, Subbarao B (2011) Antibacterial potential of the extracts of the leaves of Azadirachta indica Linn. Notulae Scientia Biologicae 3(1):65–69

    Google Scholar 

  48. Bonan RF, Bonan PR, Batista AU, Sampaio FC, Albuquerque AJ, Moraes MC et al (2015) In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mater Sci Eng C 48:372–377

    CAS  Google Scholar 

  49. Jaganathan SK, Mani MP, Palaniappan SK, Rathanasamy R (2018) Fabrication and characterisation of nanofibrous polyurethane scaffold incorporated with corn and neem oil using single stage electrospinning technique for bone tissue engineering applications. J Polym Res 25(7):146

    Google Scholar 

  50. Jaganathan SK, Mani MP, Rathanasamy R, Prabhakaran P (2018) Fabrication and characterization of tailor-made novel electrospun fibrous polyurethane scaffolds decorated with propolis and neem oil for tissue engineering applications. J Ind Text. https://doi.org/10.1177/1528083718808787

    Article  Google Scholar 

  51. Mani MP, Jaganathan SK, Khudzari AZ, Rathanasamy R, Prabhakaran P (2018) Single-stage electrospun innovative combination of polyurethane and neem oil: synthesis, characterization and appraisal of blood compatibility. J Bioact Compat Polym 33(6):573–584

    CAS  Google Scholar 

  52. Mráz J, Nohová H (1992) Percutaneous absorption of N,N-dimethylformamide in humans. Int Arch Occup Environ Health 64(2):79–83

    PubMed  Google Scholar 

  53. Kim TH, Kim SG (2011) Clinical outcomes of occupational exposure to n, n-dimethylformamide: perspectives from experimental toxicology. Safety Health Work 2(2):97–104

    Google Scholar 

  54. Joshi DR, Adhikari N (2019) An overview on common organic solvents and their toxicity. J Pharm Res Int. https://doi.org/10.9734/jpri/2019/v28i330203

    Article  Google Scholar 

  55. Massmann W (1956) Toxicological investigations on dimethylformamide. Br J Ind Med 13(1):51

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Galya T, Sedlařík V, Kuřitka I, Novotný R, Sedlaříková J, Sáha P (2008) Antibacterial poly (vinyl alcohol) film containing silver nanoparticles: preparation and characterization. J Appl Polym Sci 110(5):3178–3185

    CAS  Google Scholar 

  57. Gao Q, Luo J, Wang X, Gao C, Ge M (2015) Novel hollow α-Fe2O3 nanofibers via electrospinning for dye adsorption. Nanoscale Res Lett 10(1):176

    PubMed  PubMed Central  Google Scholar 

  58. Ali A, Shahid MA, Hossain MD, Islam MN (2019) Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. Int J Biol Macromol 138:13–20

    CAS  PubMed  Google Scholar 

  59. Unnithan AR, Barakat NA, Pichiah PT, Gnanasekaran G, Nirmala R, Cha Y-S et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohyd Polym 90(4):1786–1793

    CAS  Google Scholar 

  60. Dev VG, Venugopal J, Sudha S, Deepika G, Ramakrishna S (2009) Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohyd Polym 75(4):646–650

    CAS  Google Scholar 

  61. Rashidi S, Ataie A (2016) Structural and magnetic characteristics of PVA/CoFe2O4 nano-mats prepared via mechanical alloying method. Mater Res Bull 80:321–328

    CAS  Google Scholar 

Download references

Acknowledgements

Department of Textile Engineering and Institute of Energy Engineering (IEE), DUET, Gazipur, Bangladesh is thankfully acknowledged. Sincere gratitude due to Waffen Research Laboratory (WRL), Dhaka for their unfailing support during the study.

Funding

No financial support has been received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayub Ali.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Shahid, M.A. Polyvinyl Alcohol (PVA)–Azadirachta indica (Neem) Nanofibrous Mat for Biomedical Application: Formation and Characterization. J Polym Environ 27, 2933–2942 (2019). https://doi.org/10.1007/s10924-019-01587-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01587-9

Keywords

Navigation