Skip to main content
Log in

The Decomposition Pathways of SF6 in the Presence of Organic Insulator Vapors

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper thoroughly investigates the decomposition pathways of SF6 in the presence of organic insulator vapors by means of high level quantum chemistry calculations with density functional theory. Optimized molecular structures and vibrational frequencies of intermediate products (IM) and transition states (TS) are first reported in this work. Potential energy surface is then investigated with a more sophisticated CCSD method including zero-point energy corrections and the rate constants are calculated with transition state theory. The overall chemical decomposition pathways of SF6 + PTFE vapor are obtained which are consisted of 17 reactions with TS1–TS17. By analyzing the rate constants, reactions SF + C → S = CF → TS2 → F + SC, SF3 + C → TS7 → SF2CF → TS8 → SFCF2, SF4 + C → IM3 → TS11 → IM4 → SF3 + CF and SF5 + C → IM5 → TS15 → SF4 + CF are selected as main reactions in SF6 decomposition. The results are prerequisite to study the non-equilibrium compositions of SF6 + organic insulator vapor mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fu Y, Yang A, Wang X et al (2016) Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment. J Phys D Appl Phys 49(38):385203

    Google Scholar 

  2. Wang W, Wu Y, Rong M (2014) Influence of ablated PTFE vapor entrainment on critical dielectric strength of hot SF6 gas. IEEE Trans Dielectr Electr Insul 21(4):1478–1485

    CAS  Google Scholar 

  3. Coll I, Casanovas A, Vial L et al (2000) Chemical kinetics modelling of a decaying SF6 arc plasma in the presence of a solid organic insulator, copper, oxygen and water. J Phys D Appl Phys 33:221–229

    CAS  Google Scholar 

  4. Simka P, Seeger M, Votteler T et al (2012) Experimental investigation of the dielectric strength of hot SF6. In: IEEE 10th international conference on the properties and applications of dielectric materials (Bangalore, India)

  5. Yan J, Fang MTC, Liu Q (2001) Dielectric recovery of a residual SF6 plasma between two parallel plane electrodes. IEEE Trans Dielectr Electr Insul 8:129–136

    CAS  Google Scholar 

  6. Cliteur GJ, Hayashi Y, Haginomori E et al (1998) Calculation of the uniform breakdown field strength of SF6 gas. IEEE Trans Dielectr Electr Insul 5:843–849

    CAS  Google Scholar 

  7. Yousfi M, Robin-Jouan P, Kanzari Z (2005) Breakdown electric field calculations of hot SF6 for high voltage circuit breaker applications. IEEE Trans Dielectr Electr Insul 12:1192–1200

    CAS  Google Scholar 

  8. Tanaka Y (2005) Influence of copper vapor contamination on dielectric properties of hot air at 300–3500 K in atmospheric pressure. IEEE Trans Dielectr Electr Insul 12:504–512

    CAS  Google Scholar 

  9. Fu Y, Wang X, Yang A et al (2019) The varying characteristics of C5F10O decomposition components at 300–3500 K with a chemical kinetic model. AIP Adv 9(1):015318

    Google Scholar 

  10. Gao Q, Yang A, Wang X et al (2016) Determination of the dominant species and reactions in non-equilibrium CO2 thermal plasmas with a two-temperature chemical kinetic model. Plasma Chem Plasma Process 36:1301–1323

    CAS  Google Scholar 

  11. Wang X, Gao Q, Fu Y et al (2016) Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc. J Phys D Appl Phys 49(10):105502

    Google Scholar 

  12. Camilli G (1960) Gas-insulated power transformers. Proc IEE Part A Power Eng 107:375–382

    Google Scholar 

  13. Tang J, Liu F, Zhang X et al (2012) Characteristics of the concentration ratio of SO2F2 to SOF2 as the decomposition products of SF6 under corona discharge. IEEE Trans Plasma Sci 40:56–62

    CAS  Google Scholar 

  14. Tang J, Liu F, Zhang X et al (2012) Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges. IEEE Trans Dielectr Electr Insul 19(1):29–36

    CAS  Google Scholar 

  15. Zeng F, Luo J, Tang J et al (2017) Influence regularity of aluminum, copper and stainless-steel on SF6 PD decomposition characteristics components. J Electr Eng Technol 12(1):295–301

    Google Scholar 

  16. Coll I, Casanovas A, Pradayrol C et al (1998) Influence of a solid insulator on the spark decomposition of SF6 and 50%SF6 + 50%CF4 mixtures. J Phys D Appl Phys 31:2835

    Google Scholar 

  17. Zhang X, Li Y, Xiao S et al (2017) Decomposition mechanism of C5F10O: an environmental friendly insulation medium. Environ Sci Technol 51(17):10127–10136

    CAS  PubMed  Google Scholar 

  18. Zhang X, Li Y, Tian S et al (2018) Decomposition mechanism of the C5-PFK/CO2 gas mixture as an alternative gas for SF6. Chem Eng J 336:38–46

    CAS  Google Scholar 

  19. Zhang X, Li Y, Xiao S et al (2017) Theoretical study of the decomposition mechanism of environmentally friendly insulating medium C3F7CN in the presence of H2O in a discharge. J Phys D Appl Phys 50(32):325201

    Google Scholar 

  20. Li Y, Zhang X, Xiao S et al (2018) Decomposition properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6. Ind Eng Chem Res 57(14):5173–5182

    CAS  Google Scholar 

  21. Li Y, Zhang X, Chen D et al (2019) Theoretical study on the interaction between C5-PFK and Al (1 1 1), Ag (1 1 1): a comparative study. Appl Surf Sci 464:586–596

    CAS  Google Scholar 

  22. Li Y, Zhang X, Zhuo R et al (2018) Study on the Dielectric properties of C4F7N/N2 mixture under highly non-uniform electric field. IEEE Access 6:42868–42876

    Google Scholar 

  23. Chu J, Wang X, Wang D et al (2018) Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide. Carbon 135:95–103

    CAS  Google Scholar 

  24. Yang A, Wang D, Wang X et al (2017) Phosphorene: A promising candidate for highly sensitive and selective SF6 decomposition gas sensors. IEEE Electron Device Lett 38(7):963–966

    CAS  Google Scholar 

  25. Yang A, Wang X, Wang D et al (2018) Recent advances in phosphorene as a sensing material. Nano Today 20:13–32

    CAS  Google Scholar 

  26. Fu Y, Rong M, Wang X et al (2019) Rate constants of C5F10O decomposition reactions at temperature of 300–3500 K. J Phys D Appl Phys 52:035202

    Google Scholar 

  27. Fu Y, Rong M, Yang K et al (2016) Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment. J Phys D Appl Phys 49(15):155502

    Google Scholar 

  28. Fu Y, Wang X, Li X et al (2016) Theoretical study of the decomposition pathways and products of C5-perfluorinated ketone (C5 PFK). AIP Adv 6(8):085305

    Google Scholar 

  29. Fu Y, Wang X, Yang A et al (2018) Theoretical study of the decomposition mechanism of SF6/Cu gas mixtures. J Phys D Appl Phys 51:425202

    Google Scholar 

  30. Fu Y, Yang A, Wang X et al (2019) Theoretical study of the decomposition mechanism of C4F7N. J Phys D Appl Phys 52:245203

    CAS  Google Scholar 

  31. Johnson BG, Gill PMW, Pople JA (1993) The performance of a family of density functional methods. J Chem Phys 98(7):5612–5626

    CAS  Google Scholar 

  32. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789

    CAS  PubMed  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlege HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador PA, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford

    Google Scholar 

  35. Gopakumar G, Nguyen MT, Ceulemans A (2007) The boron buckyball has an unexpected Th symmetry. Chem Phys Lett 450(4–6):175–177

    Google Scholar 

  36. Nizovtsev AS, Kozlova SG (2013) Electronic rearrangements during the inversion of lead phthalocyanine. J Phys Chem A 117(2):481–488

    CAS  PubMed  Google Scholar 

  37. Ishida K, Morokuma K, Komornicki A (1977) The intrinsic reaction coordinate. An abinitio calculation for HNC → HCN and H + CH4 → CH4 + H. J Chem Phys 66(5):2153–2156

    CAS  Google Scholar 

  38. Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys Chem 87(26):2664–2682

    Google Scholar 

  39. Shavitt I (1959) A calculation of the rates of the Ortho-Para conversions and isotope exchanges in hydrogen. J Chem Phys 31:1359–1367

    CAS  Google Scholar 

  40. Yang L, Sonk JA, Barker JR (2015) HO + OClO reaction system: featuring a barrierless entance channel with two transition states. J Phys Chem A 119:5723–5731

    CAS  PubMed  Google Scholar 

  41. Mousavipour SH, Homayoon Z (2011) Multichannel RRKM-TST and CVT rate constant calculations for reactions of CH2OH or CH3O with HO2. J Phys Chem A 115:3291–3300

    CAS  PubMed  Google Scholar 

  42. Mebel AM, Lin MC, Melius CF (1998) Rate Constant of the HONO + HONO → H2O + NO + NO2 Reaction from ab Initio MO and TST Calculations. J Phys Chem A 102:1803–1807

    CAS  Google Scholar 

  43. National Insitute of Standards and Technology (2018) NIST chemistry webbook. https://webbook.nist.gov/chemistry

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51807160), China Postdoctoral Science Foundation (2018M643701 and 2019T120932), Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20190417), and the Science and Technology Project Funds through State Grid Corporation of China (Research on the theory and key technology of electric life assessment of high voltage GIS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwei Fu or Xiaohua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Wang, X., Wang, X. et al. The Decomposition Pathways of SF6 in the Presence of Organic Insulator Vapors. Plasma Chem Plasma Process 40, 449–467 (2020). https://doi.org/10.1007/s11090-019-10055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10055-0

Keywords

Navigation