Skip to main content
Log in

Features of the Current Sustainment in a Low-Current Discharge in Airflow

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The paper relates to the investigations of a low-current discharge in a vortex airflow with the electrode configuration corresponding to classical coaxial plasmatron. The gas flow rate is varied from 0.1 to 0.3 g/s at an inner diameter of the plasmatron nozzle of 5 mm. The discharge is powered by dc voltage via a ballast resistor. Typical averaged current is changed from 0.06 to 0.15 A so that a maximum averaged power dissipated in the discharge amounts to 160 W. In these conditions, a luminous gas region at the plasmatron exit, which in most publications is associated with a plasma jet, is observed. The method for the jet diagnostics based on a usage of the additional electrodes at the plasmatron exit has been proposed. The main idea of the experiments is the elucidation of the problem whether the jet actually represents the plasma area or we have to apply the term “plasma” with care. In particular, in the case under discussion the main charged particles in the jet are electrons that are emitted from a plasma column located in the plasmatron nozzle. The model that describes the formation of electron flow in the jet has been proposed. Typical electron density in the jet estimated with a usage of the model is at a level of 109 cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Winter J, Brandenburg R, Weltmann KD (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 24:064001

    Article  Google Scholar 

  2. Laroussi M (2015) Low-temperature plasma jet for biomedical applications: a review. IEEE Trans Plasma Sci 43:703–712

    Article  CAS  Google Scholar 

  3. Park GY, Park SJ, Choi MY, Koo IG, Byun JH, Hong JW, Sim JY, Collins GJ, Lee JK (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:043001

    Article  Google Scholar 

  4. Jaworek A, Ganan-Calvo AM, Machala Z (2019) Low temperature plasmas and electrosprays. J Phys D Appl Phys 52:233001

    Article  CAS  Google Scholar 

  5. Malik MA (2016) Nitric oxide production by high voltage electrical discharges for medical uses: a review. Plasma Chem Plasma Process 36:737–766

    Article  CAS  Google Scholar 

  6. Korolev YD (2015) Low-current discharge plasma jets in a gas flow. Application of plasma jets. Russ J Gen Chem 85:1311–1325

    Article  CAS  Google Scholar 

  7. Korolev YD, Frants OB, Landl NV, Suslov AI (2012) Low-current plasmatron as a source of nitrogen oxide molecules. IEEE Trans Plasma Sci 40:2837–2842

    Article  CAS  Google Scholar 

  8. Korolev YD, Frants OB, Landl NV, Kasyanov VS, Galanov SI, Sidorova OI, Kim Y, Rosocha LA, Matveev IB (2012) Propane oxidation in a plasma torch of a low-current nonsteady-state plasmatron. IEEE Trans Plasma Sci 40:535–542

    Article  CAS  Google Scholar 

  9. Serbin SI, Kozlovskyi AV, Burunsuz KS (2016) Investigations of nonstationary processes in low emissive gas turbine combustor with plasma assistance. IEEE Trans Plasma Sci 44:2960–2964

    Article  CAS  Google Scholar 

  10. Wang C, Lu ZS, Li DN, Xia WL, Xia WD (2018) Effect of the magnetic field on the magnetically stabilized gliding arc discharge and its application in the preparation of carbon black nanoparticles. Plasma Chem Plasma Process 38:1223–1238

    Article  CAS  Google Scholar 

  11. Zhang C, Niu ZT, Ren CY, Li H, Yan P, Shao T (2017) Factors influencing the discharge mode for microsecond-pulse gliding discharges at atmospheric pressure. IEEE Trans Dielectr Electr Insul 24:2148–2156

    Article  Google Scholar 

  12. Groger S, Ramakers M, Hamme M, Medrano JA, Bibinov N, Gallucci F, Bogaerts A, Awakowicz P (2019) Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera. J Phys D Appl Phys 52:065201

    Article  Google Scholar 

  13. Kong CD, Gao JL, Zhu JJ, Ehn A, Alden M, Li ZS (2017) Characterization of an AC glow-type gliding arc discharge in atmospheric air with a current-voltage lumped model. Phys Plasmas 24:093515

    Article  Google Scholar 

  14. Zhu JJ, Ehn A, Gao JL, Kong CD, Alden M, Salewski M, Leipold F, Kusano Y, Li ZS (2017) Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. Opt Express 25:20243–20257

    Article  CAS  Google Scholar 

  15. Zhu JJ, Gao JL, Ehn A, Alden M, Larsson A, Kusano Y, Li ZS (2017) Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure. Phys Plasmas 24:013514

    Article  Google Scholar 

  16. Zhang H, Zhu FS, Li XD, Du CM (2017) Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current. Plasma Sci Technol 19:UNSP0454

    Google Scholar 

  17. Korolev YD, Frants OB, Landl NV, Bolotov AV, Nekhoroshev VO (2014) Features of a near-cathode region in a gliding arc discharge in air flow. Plasma Sources Sci Technol 23:054016

    Article  Google Scholar 

  18. Zhang C, Shao T, Yan P, Zhou Y (2014) Nanosecond-pulse gliding discharges between point-to-point electrodes in open air. Plasma Sources Sci Technol 23:035004

    Article  Google Scholar 

  19. Zhang C, Shao T, Ma H, Ren C, Yan P, Zhou Y (2014) Comparison of μs- and ns-pulse gliding discharges in air flow. IEEE Trans Plasma Sci 42:2354–2355

    Article  Google Scholar 

  20. Sobota A, Guaitella O, Sretenovic GB, Kovacevic VV, Slikboer E, Krstic IB, Kuraica MM (2019) Plasma-surface interaction: dielectric and metallic targets and their influence on the electric field profile in a kHz AC-driven He plasma jet. Plasma Sources Sci Technol 28:045003

    Article  CAS  Google Scholar 

  21. Akishev Y, Aponin G, Petryakov A, Trushkin N (2018) On the composition of reactive species in air plasma jets and their influence on the adhesion of polyurethane foam to low-pressure polyethylene. J Phys D Appl Phys 51:274006

    Article  Google Scholar 

  22. Engelhardt M, Ries S, Hermanns P, Bibinov N, Awakowicz P (2017) Modifications of aluminum film caused by micro-plasmoids and plasma spots in the effluent of an argon non-equilibrium plasma jet. J Phys D Appl Phys 50:375201

    Article  Google Scholar 

  23. Wang RX, Xu H, Zhao Y, Zhu WD, Zhang C, Shao T (2019) Spatial-temporal evolution of a radial plasma jet array and its interaction with material. Plasma Chem Plasma Process 39:187–203

    Article  CAS  Google Scholar 

  24. Fuh CA, Wu W, Wang CJ (2016) Microwave plasma-assisted ignition and flameholding in premixed ethylene/air mixtures. J Phys D Appl Phys 49:285202

    Article  Google Scholar 

  25. Varella RA, Sagas JC, Martins CA (2016) Effects of plasma assisted combustion on pollutant emissions of a premixed flame of natural gas and air. Fuel 184:269–276

    Article  CAS  Google Scholar 

  26. Zhang H, Li L, Lia XD, Wang WZ, Yan JH, Tu X (2018) Warm plasma activation of CO2 in a rotating gliding arc discharge reactor. J CO2Util 27:472–479

    CAS  Google Scholar 

  27. Du CM, Shang C, Wang T, Li ZM, Yang X, Chen HT, Liu Y, Wang K (2017) A portable plasma sterilizer. Plasma Chem Plasma Process 37:77–97

    Article  CAS  Google Scholar 

  28. Li XY, Feng ZQ, Pu SC, Yang Y, Shi XM, Xu Z (2018) Cold atmospheric plasma jet-generated oxidized derivatives of tryptophan and their selective effects on Murine melanoma and fibroblast cells. Plasma Chem Plasma Process 38:919–936

    Article  CAS  Google Scholar 

  29. Malik MA, Schoenbach KH, Abdel-Fattah TM, Heller R, Jiang CQ (2017) Low Cost compact nanosecond pulsed plasma system for environmental and biomedical applications. Plasma Chem Plasma Process 37:59–76

    Article  CAS  Google Scholar 

  30. Malik MA, Jiang CQ, Heller R, Lane J, Hughes D, Schoenbach KH (2016) Ozone-free nitric oxide production using an atmospheric pressure surface discharge—a way to minimize nitrogen dioxide co-production. Chem Eng J 283:631–638

    Article  CAS  Google Scholar 

  31. Malik MA, Hughes D, Heller R, Schoenbach KH (2015) Surface plasmas versus volume plasma: energy deposition and ozone generation in air and oxygen. Plasma Chem Plasma Process 35:697–704

    Article  CAS  Google Scholar 

  32. Janda M, Martisovits V, Hensel K, Machala Z (2016) Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem Plasma Process 36:767–781

    Article  CAS  Google Scholar 

  33. Gao JL, Zhu JJ, Ehn A, Alden M, Li ZS (2017) In-situ non-intrusive diagnostics of toluene removal by a gliding arc discharge using planar laser-induced fluorescence. Plasma Chem Plasma Process 37:433–450

    Article  CAS  Google Scholar 

  34. Trushkin AN, Grushin ME, Kochetov IV, Trushkin NI, Akishev YS (2013) Decomposition of toluene in a steady-state atmospheric-pressure glow discharge. Plasma Phys Rep 39:167–182

    Article  CAS  Google Scholar 

  35. Zhu FS, Li XD, Zhang H, Wu AJ, Yan JH, Ni MJ, Zhang HW, Buekens A (2016) Destruction of toluene by rotating gliding arc discharge. Fuel 176:78–85

    Article  CAS  Google Scholar 

  36. Xiong Y, Zhang Q, Wandell R, Bresch S, Wang HH, Locke BR, Tang YN (2019) Synergistic 1,4-dioxane removal by non-thermal plasma followed by biodegradation. Chem Eng J 361:519–527

    Article  CAS  Google Scholar 

  37. Korolev YD, Frants OB, Landl NV, Geyman VG, Matveev IB (2009) Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition. IEEE Trans Plasma Sci 37:586–592

    Article  CAS  Google Scholar 

  38. Korolev YD, Frants OB, Geyman VG, Kasyanov VS, Landl NV (2012) Transient processes during formation of a steady-state glow discharge in air. IEEE Trans Plasma Sci 40:2951–2960

    Article  Google Scholar 

  39. Korolev YD, Frants OB, Geyman VG, Landl NV, Kasyanov VS (2011) Low-current “gliding arc” in air flow. IEEE Trans Plasma Sci 39:3319–3325

    Article  CAS  Google Scholar 

  40. Korolev YD, Frants OB, Landl NV, Geyman VG, Suslov AI (2017) Parameters of a positive column in a gliding glow discharge in air. Phys Plasmas 24:103526

    Article  Google Scholar 

  41. Korolev YD, Mesyats GA, Khuzeev AP (1980) Phenomena on electrodes preceding the semi-self-maintained space discharge transition into the spark discharge. Dokl Akad Nauk SSSR 253:606–609

    Google Scholar 

  42. Genkin SA, Karlov NV, Klimenko KA, Korolev YD, Kuzmin GP, Mesyats GA, Novoselov YN, Prokhorov AM (1984) Application of mild x-ray-radiation for initiation of self-sustained spaced discharge in larger interelectrode intervals. Pis Zh Tekh Fiz 10:641–645

    CAS  Google Scholar 

  43. Kozyrev AV, Korolev YD (1981) A model for the channel formation during the contraction of pulse volume discharges. Zh Tekh Fiz 51:2210–2213

    Google Scholar 

  44. Amirov RK, Barengolts SA, Korostylev EV, Pestovskii NV, Petrov AA, Savinov SY, Samoilov IS (2015) Erosion cell formation in the pulseless negative corona discharge. Bull Lebedev Phys Inst 42:71–76

    Article  Google Scholar 

  45. Shmelev DL, Barengolts SA (2013) Kinetic modeling of initiation of explosion center on cathode under dense plasma. IEEE Trans Plasma Sci 41:1959–1963

    Article  Google Scholar 

  46. Korolev YD, Frants OB, Nekhoroshev VO, Suslov AI, Kas’yanov VS, Shemyakin IA, Bolotov AV (2016) Simulation of nonstationary phenomena in atmospheric-pressure glow discharge. Plasma Phys Rep 42:592–600

    Article  CAS  Google Scholar 

  47. Akishev Y, Grushin M, Karalnik V, Petryakov A, Trushkin N (2010) Non-equilibrium constricted dc glow discharge in N2 flow at atmospheric pressure: stable and unstable regimes. J Phys D Appl Phys 43:075202

    Article  Google Scholar 

  48. Akishev Y, Grushin M, Kochetov I, Karal’nik V, Napartovich A, Trushkin N (2005) Negative corona, glow and spark discharges in ambient air and transitions between them. Plasma Sources Sci Technol 14:S18–S25

    Article  Google Scholar 

  49. Janda M, Martisovits V, Bucek A, Hensel K, Molnar M, Machala Z (2017) Influence of repetition frequency on streamer-to-spark breakdown mechanism in transient spark discharge. J Phys D Appl Phys 50:425207

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research under the grant 17-08-00636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Korolev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, Y.D., Nekhoroshev, V.O., Frants, O.B. et al. Features of the Current Sustainment in a Low-Current Discharge in Airflow. Plasma Chem Plasma Process 39, 1519–1532 (2019). https://doi.org/10.1007/s11090-019-10016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10016-7

Keywords

Navigation