Skip to main content

Advertisement

Log in

Plasma Induced Addition of Active Functional Groups to Biochar for Elemental Mercury Removal

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The mercury removal capacity of biochar can be improved by plasma modification and the functional group is an important factor affecting the mercury removal. This paper examines factors such as discharge voltages, gas flow rates, chlorine concentrations and discharge times that may affect functional groups on the surface of biochar. The mercury removal performance of the tobacco stem biochar prepared under different Cl2 plasma modification conditions was investigated using a fixed bed reactor. The number of C–Cl bonds and carboxyl increased after modification and decreased in mercury removal. Longer discharge times can destroy the biochar surface and possibly cause a decrease in the number of active sites. Increasing the discharge voltage promotes the formation of C–Cl bonds and carboxyl groups. Excessive gas flow rates cause active chlorine to be carried out of the reactor quickly which reduces the formation of C–Cl. The amount of C–Cl bonds increases with increased chlorine concentration. In the modified biochar, C–Cl and carboxyl take part in the adsorption of mercury to form HgCl2 and HgO, while the unmodified biochar is mainly physically adsorbed Hg0. C–Cl is the main functional group participated in mercury removal and the carboxyl is a secondary functional group. The proportion of HgCl2 is at least 68.2% in the used modified biochar. Under optimum conditions, the initial mercury removal efficiency of modified tobacco biochar was 99.1%, and the efficiency was still 79.1% after 100 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang Y, Mei D, Wang T, Wang J, Gu Y, Zhang Z, Romero CE, Pan W-P (2019) In-situ capture of mercury in coal-fired power plants using high surface energy fly ash. Environ Sci Technol. https://doi.org/10.1021/acs.est.9b01725

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rao J, Bao L, Wang B, Fan M, Feo L (2018) Plasma surface modification and bonding enhancement for bamboo composites. Compos B Eng 138:157–167

    Article  CAS  Google Scholar 

  3. Yakut S, Ulutas K, Deger D (2018) Plasma discharge power dependent AC conductivity of plasma poly(ethylene oxide) thin films. Thin Solid Films 645:269–277

    Article  CAS  Google Scholar 

  4. Durme JV, Dewulf J, Leys C, Langenhove HV (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B 78(3):324–333

    Article  CAS  Google Scholar 

  5. Wu GQ, Zhang X, Hui H, Yan J, Zhang QS, Wan JL, Dai Y (2012) Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. Chem Eng J 185–186(1):201–210

    Article  CAS  Google Scholar 

  6. Morent R, Geyter ND, Verschuren J, Clerck KD, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202(14):3427–3449

    Article  CAS  Google Scholar 

  7. Lee D, Hong SH, Paek K-H, Ju W-T (2005) Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment. Surf Coat Technol 200(7):2277–2282

    Article  CAS  Google Scholar 

  8. Wang T, Liu H, Zhang X, Liu J, Zhang Y, Guo Y, Sun B (2018) Catalytic conversion of NO assisted by plasma over Mn–Ce/ZSM5-multi-walled carbon nanotubes composites: investigation of acidity, activity and stability of catalyst in the synergic system. Appl Surf Sci 457:187–199

    Article  CAS  Google Scholar 

  9. Lu L, Zheng C, Chen J, Zhou J, Xiang G, Ni M, Cen K (2015) Plasma-induced adsorption of elemental mercury on TiO2 supported metal oxide catalyst at low temperatures. Fuel Process Technol 138:14–20

    Article  CAS  Google Scholar 

  10. Yang HM, Liu H, Wu H, Wang M (2012) Photochemical removal of gaseous elemental mercury in a dielectric barrier discharge plasma reactor. Plasma Chem Plasma Process 32(5):969–977

    Article  CAS  Google Scholar 

  11. Zhang J, Duan Y, Zhao W, Zhu C, Qiang Z, Ding W (2018) Study on elemental mercury oxidation by non-thermal plasma with calcium chloride enhancement. Plasma Chem Plasma Process 38(3):1–14

    Article  CAS  Google Scholar 

  12. Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K (2007) Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results. Fuel Process Technol 88(8):817–823

    Article  CAS  Google Scholar 

  13. Zhang X, Shen B, Zhu S, Xu H, Tian L (2016) UiO-66 and its Br-modified derivates for elemental mercury removal. J Hazard Mater 320:556–563

    Article  CAS  PubMed  Google Scholar 

  14. Stone ME, Kuehne JC, Cohen ME, Talbott JL, Scott JW (2006) Effect of iodine on mercury concentrations in dental-unit wastewater. Dent Mater 22(2):119–124

    Article  CAS  PubMed  Google Scholar 

  15. Li G, Shen B, Li Y, Zhao B, Wang F, He C, Wang Y, Zhang M (2015) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169

    Article  CAS  PubMed  Google Scholar 

  16. Shen B, Tian L, Li F, Zhang X, Xu H, Singh S (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 187:189–196

    Article  CAS  Google Scholar 

  17. Wang T, Liu J, Zhang Y, Zhang H, Chen W-Y, Norris P, Pan W-P (2018) Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chem Eng J 331:536–544

    Article  CAS  Google Scholar 

  18. Zhang B, Zeng X, Xu P, Chen J, Xu Y, Luo G, Xu M, Yao H (2016) Using the novel method of nonthermal plasma to add Cl active sites on activated carbon for removal of mercury from flue gas. Environ Sci Technol 50(21):11837–11843

    Article  CAS  PubMed  Google Scholar 

  19. Chen C, Bo L, Di L, Ogino A, Wang X, Nagatsu M (2010) Amino group introduction onto multiwall carbon nanotubes by NH/Ar plasma treatment. Carbon 48(4):939–948

    Article  CAS  Google Scholar 

  20. Tsai HJ, Su YY, Tseng CC, Hsu WK (2018) Selective modification of aligned carbon nanotubes by N2 plasma and their diode behavior. RSC Adv 8(19):10680–10685

    Article  CAS  Google Scholar 

  21. Tan Z, Qiu J, Zeng H, Liu H, Xiang J (2011) Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90(4):1471–1475

    Article  CAS  Google Scholar 

  22. Liu J, Cheney MA, Wu F, Li M (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186(1):108–113

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Ma X, Xu P, Wang H, Liu Y, He A (2018) Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate. J Hazard Mater 341:228–237

    Article  PubMed  CAS  Google Scholar 

  24. Wang F, Shen B, Gao L, Yang J (2017) Simultaneous removal of NO and Hg0 from oxy-fuel combustion flue gas over CeO2-modified low-V2O5-based catalysts. Fuel Process Technol 168:131–139

    Article  CAS  Google Scholar 

  25. Tan Z, Niu G, Chen X (2015) Removal of elemental mercury by modified bamboo carbon. Chin J Chem Eng 23(11):1875–1880

    Article  CAS  Google Scholar 

  26. Liu Z, Yang W, Xu W, Liu Y (2018) Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chem Eng J 339:468–478

    Article  CAS  Google Scholar 

  27. Johari K, Saman N, Song ST, Chin CS, Kong H, Mat H (2016) Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int Biodeterior Biodegradation 109:45–52

    Article  CAS  Google Scholar 

  28. Li G, Shen B, Li F, Tian L, Singh S, Wang F (2015) Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol 133:43–50

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhao L, Guo R, Song N, Wang J, Cao Y, Orndorff W, Pan WP (2015) Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor. J Environ Sci 33(7):156–162

    Article  CAS  Google Scholar 

  30. Yang W, Liu Z, Xu W, Liu Y (2018) Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent. Fuel 214:196–206

    Article  CAS  Google Scholar 

  31. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  32. Ren Z, Zhu X, Du J, Kong D, Wang N, Wang Z, Wang Q, Liu W, Li Q, Zhou Z (2018) Facile and green preparation of novel adsorption materials by combining sol–gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution. Appl Surf Sci 435:574–584

    Article  CAS  Google Scholar 

  33. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3(3):320–324

    Article  CAS  Google Scholar 

  34. Islam M, Patel R (2011) Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem Eng J 169(1):68–77

    Article  CAS  Google Scholar 

  35. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268

    Article  CAS  Google Scholar 

  36. Zaitsev A, Lacoste A, Poncin-Epaillard F, Bès A, Debarnot D (2017) Nanotexturing of plasma-polymer thin films using argon plasma treatment. Surf Coat Technol 330:196–203

    Article  CAS  Google Scholar 

  37. Sun Y, Liu Y, Lou Z, Yang K, Lv D, Zhou J, Baig SA, Xu X (2018) Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization effects and removal mechanism. Chem Eng J 344:616–624

    Article  CAS  Google Scholar 

  38. Hauchecorne D, Veken BJVD, Moiana A, Herrebout WA (2010) The C–Cl···N halogen bond, the weaker relative of the C–I and C–Br···N halogen bonds, finally characterized in solution. Chem Phys 374(1):30–36

    Article  CAS  Google Scholar 

  39. Santana VT, Gonçalves SPC, Agnelli JAM, Martins-Franchetti SM (2012) Biodegradation of a polylactic acid/polyvinyl chloride blend in soil. J Appl Polym Sci 125(1):536–540

    Article  CAS  Google Scholar 

  40. Pakpum C, Pussadee N (2016) Deep reactive ion etching of alumina titanium carbide using chlorine-based plasma. Surf Coat Technol 306:194–199

    Article  CAS  Google Scholar 

  41. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO(2)(2+) from aqueous solution. J Phys Chem B 113(4):860–864

    Article  CAS  PubMed  Google Scholar 

  42. Pérez-Cadenas ANF, Maldonado-Hódar FJ, Moreno-Castilla C (2003) On the nature of surface acid sites of chlorinated activated carbons. Carbon 41(3):473–478

    Article  Google Scholar 

  43. Ren X, Shao D, Zhao G, Sheng G, Hu J, Yang S, Wang X (2011) Plasma induced multiwalled carbon nanotube grafted with 2-vinylpyridine for preconcentration of Pb(II) from aqueous solutions. Plasma Process Polym 8(7):589–598

    Article  CAS  Google Scholar 

  44. Xu Y, Zeng X, Luo G, Zhang B, Xu P, Xu M, Yao H (2016) Chlorine-char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal. Fuel 183:73–79

    Article  CAS  Google Scholar 

  45. Hassett DJ, Pflughoeft-Hassett DF, Laudal DL (1999) Mercury release from coal combustion by-products to the environment. In: Mercury in the environment specialty conference

  46. Daiyang LI, Yang T, Yong HE, Liang L (2018) Study on the wet spinning of chitosan optimized by full factorial experiment method in Minitab software. Adv Text Technol 26:14–21

    Google Scholar 

  47. Zhuo W, Liu J, Zhang WC (2017) Research on phase change materials battery under Minitab software. Comput Knowl Technol 13:225–227

    Google Scholar 

  48. Ofomaja AE, Naidoo EB, Modise SJ (2010) Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Indengchemres 49(6):2562–2572

    CAS  Google Scholar 

  49. Wu FC, Ruling T, Huang SC, Rueyshin J (2009) Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review. Chem Eng J 151(1):1–9

    CAS  Google Scholar 

  50. Idris S, Iyaka YA, Ndamitso MM, Mohammed EB, Umar MT (2011) Evaluation of kinetic models of copper and lead uptake from dye wastewater by activated pride of barbados shell. Am J Chem 1(2):47–51

    Article  Google Scholar 

  51. Pavlatou A, Polyzopoulos NA (2010) The role of diffusion in the kinetics of phosphate desorption: the relevance of the Elovich equation. Eur J Soil Sci 39(3):425–436

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51706069) and the Fundamental Research Funds for the Central Universities (2017JQ002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Yongsheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, T., Sui, Z. et al. Plasma Induced Addition of Active Functional Groups to Biochar for Elemental Mercury Removal. Plasma Chem Plasma Process 39, 1449–1468 (2019). https://doi.org/10.1007/s11090-019-10019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10019-4

Keywords

Navigation