Skip to main content

Advertisement

Log in

Disruption of Striatal-Enriched Protein Tyrosine Phosphatase Signaling Might Contribute to Memory Impairment in a Mouse Model of Sepsis-Associated Encephalopathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sepsis-associated encephalopathy (SAE) is a potentially irreversible acute cognitive dysfunction with unclear mechanism. Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase which normally opposes synaptic strengthening by regulating key signaling molecules involved in synaptic plasticity and neuronal function. Thus, we hypothesized that abnormal STEP signaling pathway was involved in sepsis-induced cognitive impairment evoked by lipopolysaccharides (LPS) injection. The levels of STEP, phosphorylation of GluN2B (pGluN2B), the kinases extracellular signal-regulated kinase 1/2 (pERK), cAMP-response element binding protein (CREB), synaptophysin, brain derived neurotrophic factor (BDNF), and post-synaptic density protein 95 (PSD95) in the hippocampus, prefrontal cortex, and striatum were determined at the indicated time points. In the present study, we found that STEP levels were significantly increased in the hippocampus, prefrontal cortex, and striatum following LPS injection, which might resulted from the disruption of the ubiquitin–proteasome system. Notably, a STEP inhibitor TC-2153 treatment alleviated sepsis-induced memory impairment by increasing phosphorylation of GluN2B and ERK1/2, CREB/BDNF, and PSD95. In summary, our results support the key role of STEP in sepsis-induced memory impairment in a mouse model of SAE, whereas inhibition of STEP may provide a novel therapeutic approach for this disorder and possible other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weberpals M, Hermes M, Hermann S, Kummer MP, Terwel D, Semmler A, Berger M, Schafers M, Heneka MT (2009) NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci 29:14177–14184

    Article  CAS  Google Scholar 

  2. Gofton TE, Young GB (2012) Sepsis-associated encephalopathy. Nat Rev Neurol 8:557–566

    Article  CAS  Google Scholar 

  3. Sun W, Pei L, Liang Z (2017) mRNA and long non-coding RNA expression profiles in rats reveal inflammatory features in sepsis-associated encephalopathy. Neurochem Res 42:3199–3219

    Article  CAS  Google Scholar 

  4. Boulanger LMLP, Raghunathan A, During MJ, Wahle P, Naegele JR (1995) Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J Neurosci 15:1532–1544

    Article  CAS  Google Scholar 

  5. Xu J, Kurup P, Bartos JA, Patriarchi T, Hell JW, Lombroso PJ (2012) Striatal-enriched protein-tyrosine phosphatase (STEP) regulates pyk2 kinase activity. J Biol Chem 287:20942–20956

    Article  CAS  Google Scholar 

  6. Paul S, Nairn AC, Wang P, Lombroso PJ (2002) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci 6:34–42

    Article  Google Scholar 

  7. Paul S, Olausson P, Venkitaramani DV, Ruchkina I, Moran TD, Tronson N, Mills E, Hakim S, Salter MW, Taylor JR, Lombroso PJ (2007) The striatal-enriched protein tyrosine phosphatase gates long-term potentiation and fear memory in the lateral amygdala. Biol Psychiatry 61:1049–1061

    Article  CAS  Google Scholar 

  8. Zhang Y, Kurup P, Xu J, Carty N, Fernandez SM, Nygaard HB, Pittenger C, Greengard P, Strittmatter SM, Nairn AC, Lombroso PJ (2010) Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 107:19014–19019

    Article  CAS  Google Scholar 

  9. Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, Correa PR, Proctor WR, Lombroso PJ, Browning MD (2011) Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase. Proc Natl Acad Sci USA 108:6650–6655

    Article  CAS  Google Scholar 

  10. Kulikova EA, Khotskin NV, Illarionova NB, Sorokin IE, Bazhenova EY, Kondaurova EM, Volcho KP, Khomenko TM, Salakhutdinov NF, Ponimaskin E, Naumenko VS, Kulikov AV (2018) Inhibitor of striatal-enriched protein tyrosine phosphatase, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-Amine hydrochloride (TC-2153), produces antidepressant-like effect and decreases functional activity and protein level of 5-HT2A receptor in the brain. Neuroscience 394:220–231

    Article  CAS  Google Scholar 

  11. Olausson P, Venkitaramani DV, Moran TD, Salter MW, Taylor JR, Lombroso PJ (2012) The tyrosine phosphatase STEP constrains amygdala-dependent memory formation and neuroplasticity. Neuroscience 225:1–8

    Article  CAS  Google Scholar 

  12. Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314

    Article  CAS  Google Scholar 

  13. Xu J, Hartley BJ, Kurup P, Phillips A, Topol A, Xu M, Ononenyi C, Foscue E, Ho SM, Baguley TD, Carty N, Barros CS, Muller U, Gupta S, Gochman P, Rapoport J, Ellman JA, Pittenger C, Aronow B, Nairn AC, Nestor MW, Lombroso PJ, Brennand KJ (2016) Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Mol Psychiatry 23:271–281

    Article  Google Scholar 

  14. Ji M-h, Wang Z-y, Sun X-r, Tang H, Zhang H, Jia M, Qiu L-l, Zhang G-f, Peng YG, Yang J-j (2016) Repeated neonatal sevoflurane exposure-induced developmental delays of parvalbumin interneurons and cognitive impairments are reversed by environmental enrichment. Mol Neurobiol 54:3759–3770

    Article  Google Scholar 

  15. Begenisic T, Baroncelli L, Sansevero G, Milanese M, Bonifacino T, Bonanno G, Cioni G, Maffei L, Sale A (2014) Fluoxetine in adulthood normalizes GABA release and rescues hippocampal synaptic plasticity and spatial memory in a mouse model of Down syndrome. Neurobiol Dis 63:12–19

    Article  CAS  Google Scholar 

  16. Saavedra A, Puigdellivol M, Tyebji S, Kurup P, Xu J, Gines S, Alberch J, Lombroso PJ, Perez-Navarro E (2016) BDNF induces striatal-enriched protein tyrosine phosphatase 61 degradation through the proteasome. Mol Neurobiol 53:4261–4273

    Article  CAS  Google Scholar 

  17. Khosla C, Xu J, Chatterjee M, Baguley TD, Brouillette J, Kurup P, Ghosh D, Kanyo J, Zhang Y, Seyb K, Ononenyi C, Foscue E, Anderson GM, Gresack J, Cuny GD, Glicksman MA, Greengard P, Lam TT, Tautz L, Nairn AC, Ellman JA, Lombroso PJ (2014) Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer’s Disease. PLoS Biol 12:e1001923

    Article  Google Scholar 

  18. Thabit S, El Sayed NSE (2018) Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice. Behav Pharmacol 30:5–15

    Google Scholar 

  19. Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF (2015) Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 44:159–166

    Article  CAS  Google Scholar 

  20. Carty NC, Xu J, Kurup P, Brouillette J, Goebel-Goody SM, Austin DR, Yuan P, Chen G, Correa PR, Haroutunian V, Pittenger C, Lombroso PJ (2012) The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Transl Psychiatry 2:e137

    Article  CAS  Google Scholar 

  21. Jang SS, Royston SE, Lee G, Wang S, Chung HJ (2016) Seizure-induced regulations of Amyloid-beta, STEP61, and STEP61 substrates involved in hippocampal synaptic plasticity. Neural Plast 2016:2123748

    PubMed  PubMed Central  Google Scholar 

  22. Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, Nairn AC, Lombroso PJ (2010) Abeta-mediated NMDA receptor endocytosis in Alzheimer’s Disease involves ubiquitination of the tyrosine phosphatase STEP61. J Neurosci 30:5948–5957

    Article  CAS  Google Scholar 

  23. Lombroso PJ, Ogren M, Kurup P, Nairn AC (2016) Molecular underpinnings of neurodegenerative disorders: striatal-enriched protein tyrosine phosphatase signaling and synaptic plasticity. F1000Res 5:F1000

    Article  Google Scholar 

  24. Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, Lombroso PJ (2012) Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 64:65–87

    Article  CAS  Google Scholar 

  25. Czerniawski J, Guzowski JF (2014) Acute neuroinflammation impairs context discrimination memory and disrupts pattern separation processes in hippocampus. J Neurosci 34:12470–12480

    Article  Google Scholar 

  26. Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Ushida Y, Suganuma H, Hashimoto K (2017) Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation. J Nutr Biochem 39:134–144

    Article  CAS  Google Scholar 

  27. Dong C, Tian Z, Zhang K, Chang L, Qu Y, Pu Y, Ren Q, Fujita Y, Ohgi Y, Futamura T, Hashimoto K (2019) Increased BDNF-TrkB signaling in the nucleus accumbens plays a role in the risk for psychosis after cannabis exposure during adolescence. Pharmacol Biochem Behav 177:61–68

    Article  CAS  Google Scholar 

  28. Wu J, Dong L, Zhang M, Jia M, Zhang G, Qiu L, Ji M, Yang J (2013) Class I histone deacetylase inhibitor valproic acid reverses cognitive deficits in a mouse model of septic encephalopathy. Neurochem Res 38:2440–2449

    Article  CAS  Google Scholar 

  29. Cases S, Saavedra A, Tyebji S, Giralt A, Alberch J, Pérez-Navarro E (2018) Age-related changes in striatal-enriched protein tyrosine phosphatase levels: regulation by BDNF. Mol Cell Neurosci 86:41–49

    Article  CAS  Google Scholar 

  30. Xu J, Kurup P, Azkona G, Baguley TD, Saavedra A, Nairn AC, Ellman JA, Perez-Navarro E, Lombroso PJ (2016) Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61) levels. J Neurochem 136:285–294

    Article  CAS  Google Scholar 

  31. Xu J, Kurup P, Baguley TD, Foscue E, Ellman JA, Nairn AC, Lombroso PJ (2015) Inhibition of the tyrosine phosphatase STEP61 restores BDNF expression and reverses motor and cognitive deficits in phencyclidine-treated mice. Cell Mol Life Sci 73:1503–1514

    Article  Google Scholar 

  32. Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, Ohgi Y, Futamura T, Hashimoto K (2017) Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology 234:525–533

    Article  CAS  Google Scholar 

  33. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  CAS  Google Scholar 

  34. Moraes CA, Santos G, de Sampaio e Spohr TC, D’Avila JC, Lima FR, Benjamim CF, Bozza FA, Gomes FC (2015) Activated microglia-induced deficits in excitatory synapses through IL-1beta: implications for cognitive impairment in sepsis. Mol Neurobiol 52:653–663

    Article  CAS  Google Scholar 

  35. Xu J, Kurup P, Nairn AC, Lombroso PJ (2018) Synaptic NMDA receptor activation induces ubiquitination and degradation of STEP61. Mol Neurobiol 55:3096–3111

    Article  CAS  Google Scholar 

  36. Saavedra A, Ballesteros JJ, Tyebji S, Martinez-Torres S, Blazquez G, Lopez-Hidalgo R, Azkona G, Alberch J, Martin ED, Perez-Navarro E (2018) Proteolytic degradation of hippocampal STEP61 in LTP and learning. Mol Neurobiol 56:1475–1487

    Article  Google Scholar 

  37. Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ, Nairn AC (2015) STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease. Proc Natl Acad Sci USA 112:1202–1207

    Article  CAS  Google Scholar 

  38. Liang L, Peng Y, Zhang J, Zhang Y, Roy Mridul, Han X, Xiao X, Sun S, Liu H, Nie L, Kuang Y, Zhu Z, Deng J, Xia Y, Sankaran Vijay G, Hillyer Christopher D, Mohandas Narla, Ye M, An X, Liu J (2019) Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica 2018:206227

    Google Scholar 

  39. Molfetta R, Milito ND, Zitti B, Lecce M, Fionda C, Cippitelli M, Santoni A, Paolini R (2019) The Ubiquitin-proteasome pathway regulates Nectin2/CD112 expression and impairs NK cell recognition and killing. Eur J Immunol. https://doi.org/10.1002/eji.201847848

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 81571083, 81771156, 81772126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-jun Yang or Mu-huo Ji.

Ethics declarations

Conflict of interest

We declare that we have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Mm., Yuan, Hm., He, X. et al. Disruption of Striatal-Enriched Protein Tyrosine Phosphatase Signaling Might Contribute to Memory Impairment in a Mouse Model of Sepsis-Associated Encephalopathy. Neurochem Res 44, 2832–2842 (2019). https://doi.org/10.1007/s11064-019-02905-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02905-2

Keywords

Navigation