Skip to main content
Log in

Single-wavelength Excited Ratiometric Fluorescence pH Probe to Image Intracellular Trafficking of Tobacco Mosaic Virus

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

As a typical plant virus which has biocompatibility and high transfection efficiency, tobacco mosaic virus (TMV) has shown broad application potential in drug or gene delivery field. Elucidating its intracellular trafficking is of great importance in investigation of its cytotoxicity, targeting site, and delivery efficiency, and is advantageous to designing new TMV-based drug delivery systems with different targets. By taking advantage of the regulated pH value of different organelles in a mammalian cell, we exploit a pH detection strategy to investigate the intracellular trafficking pathway of TMV. Here, we report a single-wavelength excited ratiometric fluorescent pH probe. This probe is constructed by simultaneously coupling pH-sensitive fluorescein isothiocyanate (FITC) and pH-insensitive rhodamine B isothiocyanate (RBIRC) onto the inner surface of TMV. The fluorescence intensity ratio of FITC to RBITC excited at 488 nm responds specifically towards pH value over other interferential agents. By taking use of this single-wavelength excited ratiometric pH probe and confocal laser scanning microscopy, it is shown that the endocytosed TMV is located in a pH decreasing microenvironment and eventually enters lysosomes. This work may provide important guidance on construction of TMV-based nano carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pieters, B. J. G. E.; van Eldijk M. B.; Nolte, R. J. M.; Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev.2016, 45, 24–39.

    Article  CAS  Google Scholar 

  2. Wen, A. M.; Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem. Soc. Rev.2016, 45, 4074–4126.

    Article  CAS  Google Scholar 

  3. Liu, Z.; Qiao, J.; Niu, Z.; Wang, Q. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem. Soc. Rev.2012, 41, 6178–6194.

    Article  CAS  Google Scholar 

  4. Fan, X. Z.; Pomerantseva, E.; Gnerlich, M.; Brown, A.; Gerasopoulos, K.; McCarthy, M.; Culver, J.; Ghodssi, R. Tobacco mosaic virus: a biological building block for micro/nano/bio systems. J. Vac. Sci. Technol. A2013, 31, 050815.

    Article  CAS  Google Scholar 

  5. Alonso, J. M.; Gorzny, M. L.; Bittner, A. M. The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnol.2013, 31, 530–538.

    Article  CAS  Google Scholar 

  6. Liu, Z.; Niu, Z. Temperature responsive 3D structure of rod-like bionanoparticles induced by depletion interaction. Chinese J. Polym. Sci.2014, 32, 1271–1275.

    Article  CAS  Google Scholar 

  7. Klug, A. The tobacco mosaic virus particle: structure and assembly. Phil. Trans. R. Soc. Lond. B1999, 354, 531–535.

    Article  CAS  Google Scholar 

  8. Gao, S.; Liu, X.; Wang, Z.; Jiang, S.; Wu, M.; Tian, Y.; Niu, Z. Fluorous interaction induced self-assembly of tobacco mosaic virus coat protein for cisplatin delivery. Nanoscale2018, 10, 11732–11736.

    Article  CAS  Google Scholar 

  9. Wu, M.; Shi, J.; Fan, D.; Zhou, Q.; Wang, F.; Niu, Z.; Huang, Y. Biobehavior in normal and tumor-bearing mice of tobacco mosaic virus. Biomacromolecules2013, 14, 4032–4037.

    Article  CAS  Google Scholar 

  10. Liu, X.; Wu, F.; Tian, Y.; Wu, M.; Zhou, Q.; Jiang, S.; Niu, Z. Size dependent cellular uptake of rod-like bionanoparticles with different aspect ratios. Sci. Rep.2016, 6, 24567.

    Article  CAS  Google Scholar 

  11. Schlick, T. L.; Ding, Z.; Kovacs, E. W.; Francis, M. B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc.2005, 127, 3718–3723.

    Article  CAS  Google Scholar 

  12. Bruckman, M. A.; Steinmetz, N. F. Chemical modification of the inner and outer surfaces of tobacco mosaic virus (TMV). Methods Mol. Biol.2014, 1108, 173–185.

    Article  CAS  Google Scholar 

  13. Czapar, A. E.; Zheng, Y. R.; Riddell, I. A.; Shukla, S.; Awuah, S. G.; Lippard, S. J.; Steinmetz, N. F. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano2016, 10, 4119–4126.

    Article  CAS  Google Scholar 

  14. Finbloom, J. A.; Han, K.; Aanei, I. L.; Hartman, E. C.; Finley, D. T.; Dedeo, M. T.; Fishman, M.; Downing, K. H.; Francis, M. B. Stable disk assemblies of a tobacco mosaic virus mutant as nanoscale scaffolds for applications in drug delivery. Bioconjugate Chem.2016, 27, 2480–2485.

    Article  CAS  Google Scholar 

  15. Tian, Y.; Gao, S.; Wu, M.; Liu, X.; Qiao, J.; Zhou, Q.; Jiang, S.; Niu, Z. Tobacco mosaic virus-based 1D nanorod-drug carrier via the integrin-mediated endocytosis pathway. ACS Appl. Mater. Interfaces2016, 8, 10800–10807.

    Article  CAS  Google Scholar 

  16. Bruckman, M. A.; Jiang, K.; Simpson, E. J.; Randolph, L. N.; Luyt, L. G.; Yu, X.; Steinmetz, N. F. Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett.2014, 14, 1551–1558.

    Article  CAS  Google Scholar 

  17. Liu, X.; Liu, B.; Gao, S.; Wang, Z.; Tian, Y.; Wu, M.; Jiang, S.; Niu, Z. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J. Mater. Chem. B2017, 5, 2078–2085.

    Article  CAS  Google Scholar 

  18. Tian, Y.; Zhou, M.; Shi, H.; Gao, S.; Xie, G.; Zhu, M.; Wu, M.; Chen, J.; Niu, Z. Integration of cell-penetrating peptides with rod-like bionanoparticles: virus-inspired gene-silencing technology. Nano Lett.2018, 18, 5453–5460.

    Article  CAS  Google Scholar 

  19. MacNevin, C. J.; Watanabe, T.; Weitzman, M.; Gulyani, A.; Fuehrer, S.; Pinkin, N. K.; Tian, X.; Liu, F.; Jin, J.; Hahn, K. M. Membranepermeant, environment-sensitive dyes generate biosensors within living cells. J. Am. Chem. Soc.2019, 141, 7275–7282.

    Article  CAS  Google Scholar 

  20. Lakadamyali, M.; Rust, M. J.; Babcock, H. P.; Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Natl. Acad. Sci.2003, 100, 9280–9285.

    Article  CAS  Google Scholar 

  21. Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol.2010, 11, 50–61.

    Article  CAS  Google Scholar 

  22. Tian, Y.; Wu, M.; Liu, X.; Liu, Z.; Zhou, Q.; Niu, Z.; Huang, Y. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator. Adv. Healthc. Mater.2015, 4, 413–419.

    Article  CAS  Google Scholar 

  23. Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev.2010, 110, 2709–2728.

    Article  CAS  Google Scholar 

  24. Pan, W.; Wang, H.; Yang, L.; Yu, Z.; Li, N.; Tang, B. Ratiometric fluorescence nanoprobes for subcellular pH imaging with a single-wavelength excitation in living cells. Anal. Chem.2016, 88, 6743–6748.

    Article  CAS  Google Scholar 

  25. Hou, J. T.; Ren, W. X.; Li, K.; Seo, J.; Sharma, A.; Yu, X. Q.; Kim, J. S. Fluorescent bioimaging of pH: from design to applications. Chem. Soc. Rev.2017, 46, 2076–2090.

    Article  CAS  Google Scholar 

  26. Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S. Two-color probe to monitor a wide range of pH values in cells. Angew. Chem. Int. Ed.2013, 52, 6206–6209.

    Article  CAS  Google Scholar 

  27. Shi, W.; Li, X.; Ma, H. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew. Chem. Int. Ed.2012, 51, 6432–6435.

    Article  CAS  Google Scholar 

  28. Takahashi, S.; Kagami, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Ueno, T.; Uchiyama, M.; Koyama-Honda, I.; Mizushima, N.; Taguchi, T.; Arai, H.; Nagano, T.; Urano, Y. Development of a series of practical fluorescent chemical tools to measure pH values in living samples. J. Am. Chem. Soc.2018, 140, 5925–5933.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2018YFC1105300), the National Natural Science Foundation of China (Nos. 51703230 and 21776021), the Beijing Natural Science Foundation (No. 7182110), the Cross Training Plan for High Level Talents in Beijing, the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2017039), and the Presidential Foundation of Technical Institute of Physics and Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Tian or Zhong-Wei Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, SJ., Li, Z., Sun, ZC. et al. Single-wavelength Excited Ratiometric Fluorescence pH Probe to Image Intracellular Trafficking of Tobacco Mosaic Virus. Chin J Polym Sci 38, 587–592 (2020). https://doi.org/10.1007/s10118-020-2365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2365-2

Keywords

Navigation