Skip to main content
Log in

Orientation Efforts as Regulatory Factor of Structure Formation in Permeable Porous Poly(vinylidene fluoride) Films

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The manufacturing process of poly(vinylidene fluoride) microporous films containing through flow channels and permeable to liquids has been elaborated. The process is based on polymer melt extrusion with subsequent stages of annealing, uniaxial extensions (“cold” and “hot” drawing), and thermal stabilization. The effect of orientation parameters (melt draw ratio and extension degrees) on overall porosity, permeability, morphology, and content of polar piezoactive β-phase in crystalline structure of the films was investigated by filtration porosimetry, sorptometry, scanning electron microscopy, X-ray scattering, and mechanical properties measurements. It is shown that the through pores were formed by a percolation mechanism. It is observed that permeability and the β-phase content increased with the growth of extension degree at the pore formation stages but the portion of β-crystallites decreased with increasing melt draw ratio at extrusion, which permitted to regulate the combination of through permeability and piezoactivity values by variation of the preparation process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature2014, 505, 195–198.

    Article  CAS  Google Scholar 

  2. Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature2001, 414, 625–627.

    Article  CAS  Google Scholar 

  3. Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater.2011, 23, 821–842.

    Article  CAS  Google Scholar 

  4. Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater.2014, 26, 4607–4626.

    Article  CAS  Google Scholar 

  5. Gheibi, A.; Latifi, M.; Merati, A. A.; Bagherzadeh, R. Electrical power generation from piezoelectric electrospun nanofibers membranes: Electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym. Res.2014, 21, 1–7.

    Google Scholar 

  6. Park, T.; Kim, B.; Kim, Y.; Kim, E. Highly conductive PEDOT electrodes for harvesting dynamic energy through piezoelectric conversion. J. Mater. Chem. A2014, 2, 5462–5469.

    Article  CAS  Google Scholar 

  7. Bae, S. Ahn J. Graphene-P(VDF-TrFE) multilayer film for flexible applications. ACS Nano2013, 4, 3130–3138.

    Article  Google Scholar 

  8. Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano2014, 8, 7405–7412.

    Article  CAS  Google Scholar 

  9. Lee, J. H.; Lee, K. Y.; Kumar, B.; Tien, N. T.; Lee, N.; Kim, S. W. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci.2013, 6, 169–175.

    Article  CAS  Google Scholar 

  10. Hinchet, R.; Lee, S.; Ardila, G.; Montès, L.; Mouis, M.; Wang, Z. L. Performance optimization of vertical nanowire-based piezoelectric nanogenerators. Adv. Funct. Mater.2014, 44, 971–977.

    Article  Google Scholar 

  11. Anton, S. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct.2007, 16, R1–R21.

    Article  CAS  Google Scholar 

  12. Bowen, C. R.; Kim, H. A.: Weaver, P. M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci2014, 7, 25–44.

    Article  CAS  Google Scholar 

  13. Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett.2010, 10, 726–731.

    Article  CAS  Google Scholar 

  14. Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron.2002, 17, 669–676.

    Article  Google Scholar 

  15. Qin, Y.; Wang, X.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature2008, 451, 809–813.

    Article  CAS  Google Scholar 

  16. Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. R. M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci.2011, 375, 1–27.

    Article  CAS  Google Scholar 

  17. Kim, J. F.; Jung, J. T.; Wang, H. H.; Lee, S. Y.; Moore, T.; Sanguineti, A.; Drioli, E.; Lee, Y. M. Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods. J. Membr. Sci.2016, 509, 94–104.

    Article  CAS  Google Scholar 

  18. Cui, Z. Y.; Xu, Y. Y.; Zhu, L. P.; Wei, X. Z.; Zhang, C. F.; Zhu, B. K. Preparation of PVDF/PMMA blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Mater. Lett.2008, 62, 3809–3811.

    Article  CAS  Google Scholar 

  19. Dmitriev, I. Yu.; Bukošek, V.; Lavrentyev, V. K.; Elyashevich, G. K. Structure and deformational behavior of poly(vinylidene fluoride) hard elastic films. Acta Chim. Slov.2007, 54, 784–791.

    CAS  Google Scholar 

  20. Lei, C.; Hu, B.; Xu, R.; Cai, Q.; Shi, W. Influence of room-temperature-stretching technology on the crystalline morphology and microstructure of PVDF hard elastic film. Appl. Polym. Sci.2014, 131, P. 400077.

    Google Scholar 

  21. Sadeghi, F.; Tabatabaei, S. H.; Ajji, A.; Carreau, P. J. Effect of PVDF characteristics on extruded film morphology and porous membranes feasibility by stretching. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1219–1229.

    Article  CAS  Google Scholar 

  22. Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Y.; Bukošek, V. Porous structure, permeability, and mechanical properties of polyolefin microporous films. Phys. Solid State2012, 54, 1907–1916.

    Article  CAS  Google Scholar 

  23. Salimi, A.; Yousefi, A. A. FTIR studies of α-phase crystal formation in stretched PVDF films. Polym. Test.2003, 22, 699–704.

    Article  CAS  Google Scholar 

  24. Hu, B.; Cai, Q.; Xu, R.; Mo, H.; Chen, C.; Zhang, F.; Lei, C. Influence of uniaxial cold stretching followed by uniaxial hot stretching conditions on crystal transformation and microstructure in extrusion cast and annealed polyvinylidene fluoride porous membranes. J. Plast. Film Sheet.2015, 31, 269–285.

    Article  CAS  Google Scholar 

  25. Stauffer, D.; Aharony, A. Introduction to percolation theory. London, Taylor and Francis, 1994.

    Google Scholar 

  26. Elyashevich, G. K.; Rosova, E. Y.; Karpov, E. A. Microporous polyethylene film and method of its production. Russian Federation Patent 140,936. April 15, 1997.

  27. Elyashevich, G. K.; Karpov, E. A.; Kozlov, A. G. Deformational behavior and mechanical properties of hard elastic and porous films of polyethylene. In Macromol.Symp. «Mechanical Behavior of Polymeric Materials». Ed.: J. Kahovec, Wiley-VCH, 1999, Vol. 147, pp. 91–101.

  28. Xu, J.; Johnson M.; Wilkes G. L. A tubular film extrusion of poly(vinylidene fluoride): Structure/process/property behavior as a function of molecular weight. Polymer2004, 45, 5327–5340.

    Article  CAS  Google Scholar 

  29. Ramadan, K. S.; Sameoto, D; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct.2014, 23, 033001.

    Article  Google Scholar 

  30. Wan, C.; Bowen, C. R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A2017, 5, 3091–3128.

    Article  CAS  Google Scholar 

  31. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci.2014, 39, 683–706.

    Article  CAS  Google Scholar 

  32. Hermans, P. H.; Weidinger, A. On the determination of the crystalline fraction of polyethylenes from X-ray diffraction. Macromol. Chem.1961, 44, 24–36.

    Article  Google Scholar 

  33. Kuryndin, I. S.; Lavrentyev, V. K.; Bukošek, V.; Elyashevich, G. K. Percolation transitions in porous polyethylene and polypropylene films with lamellar structures. Polym. Sci., Ser. A.2015, 57, 717–722.

    Article  CAS  Google Scholar 

  34. Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Enhanced αγ′ transition of poly(vinylidene fluoride) by step crystallization and subsequent annealing. Chinese J. Polym. Sci.2018, 36, 598–603.

    Article  CAS  Google Scholar 

  35. Zheng, Y. R.; Zhang, J.; Sun, X. L.; Li, H. H.; Ren, Z. J.; Yan, S. K. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization. Ind. Eng. Chem. Res.2017, 56, 4580–4587.

    Article  CAS  Google Scholar 

  36. Nakamura, K.; Sawai, D.; Watanabe, Yu.; Taguchi, D.; Takahashi, Yo.; Furukawa, T.; Kanamoto, T. Effect of annealing on the structure and properties of poly(vinylidene fluoride) β-form films. J. Polym. Sci., Part B: Polym. Phys.2003, 41, 1701–1712.

    Article  CAS  Google Scholar 

  37. Darestani, M. T.; Coster, H. G. L.; Chilcott, T. C.; Fleming, S.; Nagarajan, V.; An, H. Piezoelectric membranes for separation processes: Fabrication and piezoelectric properties. J. Membr. Sci.2013, 434, 184–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Elyashevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyashevich, G.K., Kuryndin, I.S., Dmitriev, I.Y. et al. Orientation Efforts as Regulatory Factor of Structure Formation in Permeable Porous Poly(vinylidene fluoride) Films. Chin J Polym Sci 37, 1283–1289 (2019). https://doi.org/10.1007/s10118-019-2284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2284-2

Keywords

Navigation