Skip to main content

Advertisement

Log in

Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a novel waterborne polyurethane (WPU) with azobenzene-containing (azo-containing) pendant groups was synthesized by isophorone diisocyanate, long-chain diol of polycaprolactone, 2-ethyl-2-methyl-butanoic acid (2,2-dimethylolpropionic acid), 10-(4-(phenyldiazenyl)phenoxy)decyl-3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate, and N,N-diethyl-ethanamine (triethylamine). Moreover, the influence of ultraviolet and visible (UV-Vis) light irradiation on the viscoelasticity of azo-containing WPU film in terms of the reversible trans-cis photoisomerization of azo-containing pendant groups was investigated by UV-Vis light spectroscopy, atomic force microscopy, and dynamic thermomechanical analysis. The results revealed that the adhesion of azo-containing WPU with single crystal silicon atomic force microscope probe was about 13 nN when irradiated by 450 nm Vis light for 60 s at 25 °C. Subsequently, the adhesion increased to 82 nN after irradiation with 365 nm UV light for 60 s at 25 °C. In addition, the azo-containing WPU presented a photo-induced reversible transition of tensile modulus and tanδ in the range from about 2 MPa to 22 MPa and 6000 to 0.35 with UV-Vis light cyclic irradiation for 120 s at 25 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monti, S.; Orlandi, G.; Palmieri, P. Features of the photochemically active state surfaces of azobenzene. Chem. Phys.1982, 71, 87–99.

    Article  CAS  Google Scholar 

  2. Freundlich, H.; Heller, W. The adsorption of cis- and trans-azobenzene. J. Am. Chem. Soc.1982, 61, 2228–2230.

    Article  Google Scholar 

  3. Cembran, A.; Bernardi, F.; Garavelli, M.; Gagliardi, L.; Orlandi, G. On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S 0, S 1, and T 1. J. Am. Chem. Soc.2004, 126, 3234–3243.

    Article  CAS  Google Scholar 

  4. Henzl, J.; Mehlhorn, M.; Gawronski, H.; Rieder, K. H.; Morgenstern, K. Reversible cis-trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed.2006, 45, 603–606.

    Article  CAS  Google Scholar 

  5. Schultz, T.; Quenneville, J.; Levine, B.; Toniolo, A.; Martínez, T. J.; Lochbrunner, S.; Schmitt, M.; Shaffer, J. P.; Zgieski, M. Z.; Stolow, A. Mechanism and dynamics of azobenzene photoisomerization. J. Am. Chem. Soc.2003, 125, 8098–8099.

    Article  CAS  Google Scholar 

  6. Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev.2012, 41, 1809–1825.

    Article  CAS  Google Scholar 

  7. Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid-liquid phase change materials and their encapsulation technologies. J. Renew. Sustain. Ener.2015, 48, 373–391.

    Article  CAS  Google Scholar 

  8. Zhang, X. M.; Zeng, Q. D.; Wang, C. Reversible phase transformation at the solid-liquid interface: STM reveals. Chem. Asian J.2013, 8, 2330–2340.

    Article  CAS  Google Scholar 

  9. Deng, W.; Brûlet A.; Albouy, P. A.; Keler, P.; Wang, X. G.; Li, M. H. Morphology study of a series of azobenzene-containing side-on liquid crystalline triblock copolymers. Chinese J. Polym. Sci.2012, 30, 258–268.

    Article  CAS  Google Scholar 

  10. Pan, S.; Ni, M.; Mu, B.; Li, Q.; Hu, X. Y.; Lin, C.; Chen, D.; Wang, L. Well-defined pillararene-based azobenzene liquid crystalline photoresponsive materials and their thin films with photomodulated surfaces. Adv. Funct. Mater.2015, 25, 3571–3580.

    Article  CAS  Google Scholar 

  11. Kim, D. Y.; Lee, S. A.; Kim, H.; Kim, S. M.; Kim, N.; Jeong, K. U. An azobenzene-based photochromic liquid crystalline amphiphile for a remote-controllable light shutter. Chem. Commun.2015, 41, 11080–11083.

    Article  Google Scholar 

  12. Kitano, A.; Ichikawa, R.; Nakano, H. Photomechanical response observed for azobenzene-based photochromic amorphous molecular films fabricated on the surface of agar gel. Opt. Mater.2018, 86, 51–55.

    Article  CAS  Google Scholar 

  13. Hu, D.; Lin, J.; Jin, S.; Hu, Y.; Wang, W.; Wang, R.; Yang, B. Synthesis, structure and optical data storage properties of silver nanoparticles modified with azobenzene thiols. Mater. Chem. Phys.2016, 170, 108–112.

    Article  CAS  Google Scholar 

  14. Virkki, M.; Tuominen, O.; Forni, A.; Saccone, M.; Metrangolo, P.; Resnati, G.; Priimagi, A. Halogen bonding enhances nonlinear optical response in poled supramolecular polymers. J. Mater. Chem. C2015, 3, 3003–3006.

    Article  CAS  Google Scholar 

  15. Sobolewska, A.; Bartkiewicz, S.; Mysliwiec, J.; Singer, K. D. Holographic memory devices based on a single-component phototropic liquid crystal. J. Mater. Chem. C2014, 2, 1409–1412.

    Article  CAS  Google Scholar 

  16. Beharry, A. A.; Sadovski, O.; Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 2011, 133, 19684–19687.

    Article  CAS  Google Scholar 

  17. Zhang, W.; Yoshida, K.; Fujiki, M.; Zhu, X. Unpolarized-light-driven amplified chiroptical modulation between chiral aggregation and achiral disaggregation of an azobenzene-alt-fluorene copolymer in limonene. Macromolecules2011, 44, 5105–5111.

    Article  CAS  Google Scholar 

  18. Wang, L.; Yin, L.; Zhang, W.; Zhu, X.; Fujiki, M. Circularly polarized light with sense and wavelengths to regulate azobenzene supramolecular chirality in optofluidic medium. J. Am. Chem. Soc.2017, 139, 13218–13226.

    Article  CAS  Google Scholar 

  19. Yin, L.; Liu, M.; Zhao, Y.; Zhang, S.; Zhang, W.; Zhang, Z.; Zhu, X. Supramolecular chirality induced by chiral solvation in achiral cyclic Azo-containing polymers: Topological effects on chiral aggregation. Polym. Chem.2018, 9, 769–776.

    Article  CAS  Google Scholar 

  20. Chiu, K. Y.; Tran, T. T. H.; Chang, S. H.; Yang, T. F.; Su, Y. O. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC. Dyes Pigments2017, 146, 512–519.

    Article  CAS  Google Scholar 

  21. Chiu, K. Y.; Tran, T. T. H.; Wu, C. G.; Chang, S. H.; Yang, T. F.; Su, Y. O. Electrochemical studies on triarylamines featuring an azobenzene substituent and new application for small-molecule organic photovoltaics. J. Electroanal. Chem.2017, 787, 118–124.

    Article  CAS  Google Scholar 

  22. Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem.2017, 9, 145–151.

    Article  CAS  Google Scholar 

  23. Jiang, W. H.; Wang, G. J.; He, Y. N.; An, Y. L.; Wang, X. G.; Song, Y. L.; Jiang, L. Properties of photo-responsive superhydrophobic azobenzene multilayers fabricated by electrostatic self-assembly. Chem. J. Chinese U.2005, 26, 1360–1362.

    CAS  Google Scholar 

  24. Zhang, J. L.; Wu, D. M.; Yang, D. Y.; Qiu, F. X. Environmentally friendly polyurethane composites: Preparation, characterization and mechanical properties. J. Polym. Environ. 2010, 18, 128–134.

    Article  CAS  Google Scholar 

  25. Akindoyo, J. O.; Beg, M.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. Polyurethane types, synthesis and applications—A review. RSC Adv.2010, 6, 114453–114482.

    Article  Google Scholar 

  26. Kang, S. Y.; Ji, Z.; Tseng, L. F.; Turner, S. A.; Villanueva, D. A.; Johnson, R.; Ariana, A.; Langer, R. Design and synthesis of waterborne polyurethanes. Adv. Mater.2018, 30, 1706237.

    Article  Google Scholar 

  27. Li, J.; Zhang, X.; Gooch, J.; Sun, W.; Wang, H.; Wang, K. Photo- and pH-sensitive azo-containing cationic waterborne polyurethane. Polym. Bull.2015, 72, 881–895.

    Article  CAS  Google Scholar 

  28. Ban, J.; Mu, L.; Yang, J.; Chen, S.; Zhuo, H. New stimulus-responsive shape-memory polyurethanes capable of UV lighttriggered deformation, hydrogen bond-mediated fixation, and thermal-induced recovery. J. Mater. Chem. A2017, 5, 14514–14518.

    Article  CAS  Google Scholar 

  29. Wang, S.; Song, Y.; Jiang, L. Photoresponsive surfaces with controllable wettability. J. Photoch. Photobio. C2007, 8, 18–29.

    Article  CAS  Google Scholar 

  30. Dai, L.; Cai, L.; Yuan, Y.; Liu, A.; Li, Z. Reversible wettability of optothermal responsively perfluoroalkyl azobenzene self-assembled monolayers. Phosphorus. Sulfur.2017, 192, 283–291.

    Article  CAS  Google Scholar 

  31. Joshi, G. K.; Blodgett, K. N.; Muhoberac, B. B.; Johnson, M. A.; Smith, K. A.; Sardar, R. Ultrasensitive photoreversible molecular sensors of azobenzene- functionalized plasmonic nanoantennas. Nano Lett.2014, 14, 532–540.

    Article  CAS  Google Scholar 

  32. Freyer, W.; Brete, D.; Schmidt, R.; Gahl, C.; Carley, R.; Weinelt, M. Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments. J. Photoch. Photobio. A2009, 204, 102–109.

    Article  CAS  Google Scholar 

  33. Zhang, S.; Jiang, J.; Yang, C.; Chen, M.; Liu, X. Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog. Org. Coat.2011, 70, 1–8.

    Article  CAS  Google Scholar 

  34. Liu, D.; Bastiaansen, C. W.; den Toonder, J. M.; Broer, D. J. Photoswitchable surface topologies in chiral nematic coatings. Angew. Chem. Int. Ed.2012, 51, 892–896.

    Article  CAS  Google Scholar 

  35. Dokukin, M. E.; Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir2012, 28, 16060–16071.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Guangzhou Science and Technology Plan Project (No. 201607010348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Ming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Liu, D., Li, SH. et al. Investigation on Viscoelasticity of Waterborne Polyurethane with Azobenzene-containing Pendant Groups under Ultraviolet and Visible-light Irradiation. Chin J Polym Sci 37, 1267–1272 (2019). https://doi.org/10.1007/s10118-019-2289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2289-x

Keywords

Navigation