Skip to main content
Log in

Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Computational strategies have been employed to investigate the influence of the nature of monomers and cross-linker in order to design three dimensional imprinted polymers with selective recognition sites for L-phenylalanine benzyl ester (L-PABE) molecule. Here, computational chemistry methods were applied to screen the molar quantity of functional monomers that interact with one mole of the template molecule. Effects of the nature of functional monomer, cross-linker, and molar ratio were determined computationally using density functional calculations with B3LYP functional and generic 6–31G basis set. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were used as the functional monomer and crosslinking agent, respectively. L-PABE imprinted polymer layered on multiwalled carbon nanotube (MWCNT) and conventional bulk MIP were synthesised and characterized as well. To investigate the influence of pre-organization of binding sites on the selectivity of L-PABE, respective non-imprinted polymers were also synthesised. MWCNT-MIPs and MIPs exhibited the highest adsorption capacity towards L-PABE. The synthesized polymers revealed characteristic adsorption features and selectivity towards L-PABE in comparison with those of its enantiomer analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors2017, 288, 1–17.

    Google Scholar 

  2. Shah, N; Haneef, M; Park, J; Ul-Islam, M. A brief overview of molecularly imprinted polymers: From basics to applications. J. Pharm. Res.2012, 5, 3309–3317.

    CAS  Google Scholar 

  3. Ou, J.; Dong, J.; Tian, T.; Hu, J.; Ye, M.; Zou, H. Enantioseparation of tetrahydropalmatine and Tröger’s base by molecularly imprinted monolith in capillary electrochromatography. J. Biochem. Biophys. Methods2007, 70, 71–76.

    CAS  PubMed  Google Scholar 

  4. Lu, Y.; Li, C.; Zhang, H.; Liu, X. Study on the mechanism of chiral recognition with molecularly imprinted polymers. Anal. Chim. Acta2003, 489, 33–43.

    CAS  Google Scholar 

  5. Mahony, J. O.; Karlsson, B. C. G.; Nicholls, I. A. Correlated theoretical, spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst2007, 132, 1161–1168.

    Google Scholar 

  6. Sajini, T.; Gigimol, M. G.; Mathew, B. A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices. Mater. Today Chem.2019, 11, 283–295.

    CAS  Google Scholar 

  7. Zhong, C.; Yang, B.; Jiang, X.; Li, J. Critical reviews in analytical chemistry current progress of nanomaterials in molecularly imprinted electrochemical sensing current progress of nanomaterials in molecularly imprinted electrochemical sensing. Crit. Rev. Anal. Chem.2018, 48, 15–32.

    CAS  PubMed  Google Scholar 

  8. Rezaei, B.; Rahmanian, O. Direct nanolayer preparation of molecularly imprinted polymers immobilized on multiwalled carbon nanotubes as a surface-recognition sites and their characterization. J. Appl. Polym. Sci.2012, 125, 798–803.

    CAS  Google Scholar 

  9. Jacobs, C. Nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta2010, 662, 105–127.

    CAS  PubMed  Google Scholar 

  10. Anirudhan, T. S.; Alexander, S. Synthesis and characterization of vinyl-functionalized multiwalled carbon nanotubes based molecular imprinted polymer for the separation of chlorpyrifos from aqueous solutions. J. Chem. Technol. Biotechnol.2013, 88, 1847–1858.

    CAS  Google Scholar 

  11. Xu, L.; Xu, Z. Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J. Polym. Res.2012, 19, 1–6.

    Google Scholar 

  12. Kan, X.; Zhao, Y.; Geng, Z.; Wang, Z.; Zhu, J. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J. Phys. Chem. C2008, 112, 4849–4854.

    CAS  Google Scholar 

  13. Scida, K.; Stege, P. W.; Haby, G.; Messina, G. A.; García, C. D. Recent applications of carbon-based nanomaterials in analytical chemistry. Anal. Chim. Acta2011, 691, 6–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Prasad, B. B.; Srivastava, A.; Pandey, I.; Tiwari, M. P. Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of D- and L-methionine. J. Chromatogr. B2013, 912, 65–74.

    CAS  Google Scholar 

  15. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon2008, 6, 2–9.

    Google Scholar 

  16. Nicholls, I. A.; Andersson, H. S.; Golker, K.; Henschel, H.; Karlsson, B. C. G.; Olsson, G. D.; Rosengren, A. M.; Shoravi, S.; Suriyanarayanan, S.; Wiklander, J. G.; Wikman, S. Rational design of biomimetic molecularly imprinted materials: Theoretical and computational strategies for guiding nanoscale structured polymer development. Anal. Bioanal. Chem.2011, 400, 1771–1786.

    CAS  PubMed  Google Scholar 

  17. Meier, F.; Schott, B.; Riedel, D.; Mizaikoff, B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal. Chim. Acta2012, 744, 68–74.

    CAS  PubMed  Google Scholar 

  18. Riahi, S.; Edris-Tabrizi, F.; Javanbakht, M.; Ganjali, M. R.; Norouzi, P. A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J. Mol. Model.2009, 15, 829–836.

    PubMed  Google Scholar 

  19. Cowen, T.; Karim, K.; Piletsky, S. Computational approaches in the design of synthetic receptors—A review. Anal. Chim. Acta2016, 936, 62–74.

    CAS  PubMed  Google Scholar 

  20. Nicholls, I. A.; Chavan, S.; Golker, K.; Karlsson, C. G.; Olsson, G. D.; Rosengren, A. M. Theoretical and computational strategies for the study of the molecular imprinting process and polymer performance. Adv. Biochem. Eng. Biotechnol.2015, 150, 25–50.

    CAS  PubMed  Google Scholar 

  21. Batra, D.; Shea, K. J. Combinatorial methods in molecular imprinting. Curr. Opin. Chem. Biol.2003, 7, 434–442.

    CAS  PubMed  Google Scholar 

  22. Sajini, T.; Aravind, K.; Mathew, B. Theoretical and computational strategies for the fabrication of enantioselective recognition site on molecularly imprinted polymers. Int. J. Curr. Adv. Res.2017, 6, 6334–6336.

    Google Scholar 

  23. Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. K.; Mahony, J. O.; Rosengren, A. M.; Rosengren, K. J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens. Bioelectron.2009, 25, 543–552.

    CAS  PubMed  Google Scholar 

  24. Tadi, K. K.; Motghare, R. V. Computational and experimental studies on oxalic acid imprinted polymer. J. Chem. Sci.2013, 125, 413–418.

    CAS  Google Scholar 

  25. Riahi, S.; Eynollahi, S.; Ganjali, M. R.; Norouzi, P. Computational approach to investigation of template/monomer complex in imprinted polymers; dinitrobenzene sensor. Int. J. Electrochem. Sci.2010, 5, 509–516.

    CAS  Google Scholar 

  26. Khan, M. S.; Wate, P. S.; Krupadam, R. J. Combinatorial screening of polymer precursors for preparation of benzo. J. Mol. Model.2012, 18, 1969–1981.

    CAS  PubMed  Google Scholar 

  27. Nicholls, I. A.; Karlsson, C. G.; Olsson, G. D.; Rosengren, A. M. Computational strategies for the design and study of molecularly imprinted materials. Ind. Eng. Chem. Res.2018, 10, 27.

    Google Scholar 

  28. McCormick, T. M.; Bridges, C. R.; Carrera, E. I.; Dicarmine, P. M.; Gibson, G. L.; Hollinger, J.; Kozycz, L. M.; Seferos, D. S. Conjugated polymers: Evaluating DFT methods for more accurate orbital energy modeling. Macromolecules2013, 46, 3879–3886.

    CAS  Google Scholar 

  29. Singh, A. K.; Singh, M. Designing L-serine targeted molecularly imprinted polymer via theoretical investigation. J. Theor. Comput. Chem.2016, 15

    CAS  Google Scholar 

  30. Mojica, E. R. E. Screening of different computational models for the preparation of sol-gel imprinted materials. J. Mol. Model.2013, 19, 3911–3923.

    CAS  PubMed  Google Scholar 

  31. Silva, C. F.; Borges, K. B.; Soares, C. Rational design of a molecularly imprinted polymer for dinotefuran: Theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent. Analyst2018, 143, 141–149.

    CAS  Google Scholar 

  32. Pardeshi, S.; Patrikar, R.; Dhodapkar, R.; Kumar, A. Validation of computational approach to study monomer selectivity toward the template Gallic acid for rational molecularly imprinted polymer design. J. Mol. Model.2012, 18, 4797–4810.

    CAS  PubMed  Google Scholar 

  33. Acquaye, C. T. A.; Gorecki, M.; Wilchek, M.; Votano, J. R.; Rich, A. Antisickling activity of amino acid benzyl esters. Proc. Natl. Acad. Sci.1980, 77, 181–185.

    PubMed  Google Scholar 

  34. Acquaye, C. T. A.; Young, J. D.; Ellory, J. C.; Gorecki, M.; Wilchek, M. Mode of transport and possible mechanism of action of L-phenylalanine benzyl ester as an anti-sickling agent. Biochim. Biophys. Acta1982, 693, 407–416.

    CAS  PubMed  Google Scholar 

  35. Frisch, G. E. S. M. J.; Trucks, G. W.; Schlegel, H. B.; Robb, B. M. M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, H. P. H. G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Izmaylov, M. H. A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Ehara, T. N. M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Honda, J. Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, E. B. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Kudin, J. N. K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Raghavachari, J. T. K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Cossi, J. B. C. M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Bakken, R. E. S. V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Yazyev, J. W. O. O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Martin, G. A. V. R. L.; Morokuma, K.; Zakrzewski, V. G.; Salvador, A. D. D. P.; Dannenberg, J. J.; Dapprich S.; Farkas, D. J. F. O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. Gaussian 09 Revis. D.01, 2013.

  36. Dennington, R.; Keith, T.; Millam, J. Semichem Inc. Shawnee Mission. KS, 2016.

  37. Polimer, P.; Molekul, C. Synthesis and characterization of a molecularly imprinted polymer for Pb2+ uptake using 2-vinylpyridine as the complexing monomer. Sains. Malaysiana2010, 39, 829–835.

    Google Scholar 

  38. Zakaria, N. D.; Yusof, N. A.; Haron, J.; Abdullah, A. H. Synthesis and evaluation of a molecularly imprinted polymer. Int. J. Mol. Sci.2009, 10, 354–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, W.; Li, Q.; Cong, J.; Wei, B.; Wang, S. Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of Ginsenoside Re. Polymers2018, 10.

  40. Yuan, H.; Ma, X.; Xu, Z. Pore structure analysis of PFSA/SiO2 composite catalysts from nitrogen adsorption isotherms. Sci. China Chem.2011, 54, 257–262.

    CAS  Google Scholar 

  41. Li, S.; Huang, X.; Zheng, M.; Li, W.; Tong, K. Molecularly imprinted polymers: Thermodynamic and kinetic considerations on the specific sorption and molecular recognition. Sensors2008, 8, 2854–2864.

    PubMed  Google Scholar 

  42. Karim, K.; Breton, F.; Rouillon, R.; Piletska, E. V.; Guerreiro, A.; Chianella, I.; Piletsky, S. A. How to find effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Deliver. Rev.2005, 57, 1795–1808.

    CAS  Google Scholar 

  43. Liu, J.; Wang, Y.; Tang, S. Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. New J. Chem.2017, 41, 13370–13376.

    CAS  Google Scholar 

  44. Muhammad, T.; Nur, Z.; Piletska, E. V.; Piletsky, S. A. Rational design of molecularly imprinted polymer: The choice of cross-linker. Analyst2012, 137, 2623–2628.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajini, T., Thomas, R. & Mathew, B. Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology. Chin J Polym Sci 37, 1305–1318 (2019). https://doi.org/10.1007/s10118-019-2282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2282-4

Keywords

Navigation