Skip to main content
Log in

Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Highly potent ionic organocatalyst is developed for room-temperature controlled ring-opening polymerization (ROP) of lactones, including δ-valerolactone, ε-caprolactone, and δ-hexalactone. The catalysts are prepared by simply mixing tetra-n-butyl ammonium hydroxide and a (thio)urea at elevated temperature under vacuum, and used in cooperation with an alcoholic initiator. The performance of the catalyst is readily adjusted and optimized through variation of the (thio)urea precursor, catalyst composition, and reaction condition. Urea-derived catalysts are generally superior to thiourea-derived ones. Provided with proper N-substituents, the catalyst affords both high polymerization efficiency and high selectivity for monomer enchainment over macromolecular transesterification, even at high monomer conversion and/or substantially extended reaction time. In addition to acidity, structural symmetry of the urea also proves decisive for the catalytic activity, which enables a catalyst-assisted proton transfer process for the ring-opening of lactone and thus provides a novel mechanistic insight for ROP catalyzed by hydrogen-bonding type bifunctional ionic organocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albertsson, A. C.; Varma, I. K. Aliphatic polyesters: Synthesis, properties and applications. Adv. Polym. Sci.2002, 157, 1–40.

    CAS  Google Scholar 

  2. Nair, L. S.; Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci.2007, 32, 762–798.

    CAS  Google Scholar 

  3. Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev.2009, 38, 3484–3504.

    CAS  PubMed  Google Scholar 

  4. Lecomte, P.; Jérôme, C. Recent developments in ring-opening polymerization of lactones. Adv. Polym. Sci.2012, 255, 173–217.

    Google Scholar 

  5. Williams, C. K. Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev.2007, 36, 1573–1580.

    CAS  PubMed  Google Scholar 

  6. Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev.2007, 107, 5813–5840.

    CAS  PubMed  Google Scholar 

  7. Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. Organocatalysis: Opportunities and challenges for polymer synthesis. Macromolecules2010, 23, 2093–2107.

    Google Scholar 

  8. Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci.2016, 56, 64–115.

    CAS  Google Scholar 

  9. Hu, S.; Zhao, J.; Zhang, G.; Schlaad, H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci.2017, 74, 34–77.

    CAS  Google Scholar 

  10. Boileau, S.; Illy, N. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Prog. Polym. Sci.2011, 36, 1132–1151.

    CAS  Google Scholar 

  11. Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun.2018, 1800485.

    Google Scholar 

  12. Fevre, M.; Pinaud, J.; Gnanou, Y.; Vignolle, J.; Taton, D. N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev.2013, 42, 2142–2172.

    CAS  PubMed  Google Scholar 

  13. Naumann, S.; Dove, A. P. N-heterocyclic carbenes as organocatalysts for polymerizations: Trends and frontiers. Polym. Chem.2015, 6, 3185–3200.

    CAS  Google Scholar 

  14. Gazeau-Bureau, S.; Delcroix, D.; Martín-Vaca, B.; Bourissou, D.; Navarro, C.; Magnet, S. Organo-catalyzed ROP of ε-caprolactone: Methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules2008, 21, 3782–3784.

    Google Scholar 

  15. Kakuchi, R.; Tsuji, Y.; Chiba, K.; Fuchise, K.; Sakai, R.; Satoh, T.; Kakuchi, T. Controlled/living ring-opening polymerization of δ-valerolactone using triflylimide as an efficient cationic organocatalyst. Macromolecules2010, 23, 7090–7094.

    Google Scholar 

  16. Makiguchi, K.; Satoh, T.; Kakuchi, T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules2011, 44, 1999–2005.

    CAS  Google Scholar 

  17. Thomas, C.; Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem.2014, 16, 1687–1699.

    CAS  Google Scholar 

  18. Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc.2006, 128, 4556–4557.

    CAS  PubMed  Google Scholar 

  19. Zhang, X.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem.2016, 8, 1047–1053.

    CAS  PubMed  Google Scholar 

  20. Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules2006, 39, 8574–8583.

    CAS  Google Scholar 

  21. Li, H.; Wang, C.; Yue, J.; Zhao, X.; Bai, F. Living ring-opening polymerization of lactides catalyzed by guanidinium acetate. J. Polym. Sci., Part A: Polym. Chem.2004, 42, 3775–3781.

    CAS  Google Scholar 

  22. Makiguchi, K.; Kikuchi, S.; Yanai, K.; Ogasawara, Y.; Sato, S.; Satoh, T.; Kakuchi, T. Diphenyl phosphate/4-dimethyl-aminopyridine as an efficient binary organocatalyst system for controlled/living ring-opening polymerization of L-lactide leading to diblock and end-functionalized poly(L-lactide)s. J. Polym. Sci., Part A: Polym. Chem.2014, 52, 1047–1054.

    CAS  Google Scholar 

  23. Wang, X.; Cui, S.; Li, Z.; Kan, S.; Zhang, Q.; Zhao, C.; Wu, H.; Liu, J.; Wu, W.; Guo, K. A base-conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polym. Chem.2014, 5, 6051–6059.

    CAS  Google Scholar 

  24. Miao, Y.; Stanley, N.; Favrelle, A.; Bousquet, T.; Bria, M.; Mortreux, A.; Zinck, P. New acid/base salts as co-catalysts for the organocatalyzed ring opening polymerization of lactide. J. Polym. Sci., Part A: Polym. Chem.2015, 53, 659–664.

    CAS  Google Scholar 

  25. Lin, B.; Waymouth, R. M. Urea anions: Simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc.2017, 139, 1645–1652.

    CAS  PubMed  Google Scholar 

  26. Tan, C.; Xiong, S.; Chen, C. Fast and controlled ring-opening polymerization of cyclic esters by alkoxides and cyclic amides. Macromolecules2018, 51, 2048–2053.

    CAS  Google Scholar 

  27. Lin, L.; Han, D.; Qin, J.; Wang, S.; Xiao, M.; Sun, L.; Meng, Y. Nonrtrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): Facile bulk polymerization using economical ureas/alkoxides. Macromolecules2018, 1, 9317–9322.

    Google Scholar 

  28. Xia, Y.; Chen, Y.; Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Base-to-base organocatalytic approach for one-pot construction of poly(ethylene oxide)-based macromolecular structures. Macromolecules2016, 49, 6817–6825.

    CAS  Google Scholar 

  29. Pothupitiya, J. U.; Dharmaratne, N. U.; Jouaneh, T. M. M.; Fastnacht, K. V.; Coderre, D. N.; Kiesewetter, M. K. H-bonding organocatalysts for the living, solvent-free ring-opening polymerization of lactones: Toward an all-lactones, all-conditions approach. Macromolecules2017, 50, 8948–8954.

    CAS  Google Scholar 

  30. Zhang, C. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules2018, 51, 8705–8711.

    CAS  Google Scholar 

  31. Blain, M.; Yau, H.; Jean-Gerard, L.; Auvergne, R.; Benazet, D.; Schreiner, P. R.; Caillol, S.; Andrioletti, B. Urea- and thiourea-catalyzed aminolysis of carbonates. ChemSusChem2016, 9, 2269–2272.

    CAS  PubMed  Google Scholar 

  32. Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. (Thio)urea organocatalyst equilibrium acidities in DMSO. Org. Lett.2012, 14, 1724–1727.

    CAS  PubMed  Google Scholar 

  33. Walvoord, R. R.; Huynh, P. N. H.; Kozlowski, M. C. Quantification of electrophilic activation by hydrogen-bonding organocatalysts. J. Am. Chem. Soc.2014, 136, 16055–16065.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, B.; Waymouth, R. M. Organic ring-opening polymerization catalysts: Reactivity control by balancing acidity. Macromolecules2018, 51, 2932–2938.

    CAS  Google Scholar 

  35. Zhao, W.; Wang, Q.; Cui, Y.; He, J.; Zhang, Y. Living/controlled ring-opening (co)polymerization of lactones by Al-based catalysts with different side arms. Dalton Trans, DOI:https://doi.org/10.1039/C8DT03941K.

    CAS  PubMed  Google Scholar 

  36. Wang, Q.; Zhao, W.; He, J.; Zhang, Y.; Chen, E. Y. X. Living ring-opening polymerization of lactones by N-heterocyclic olefin/Al(C6F5)3 Lewis pairs: Structures of intermediates, kinetics, and mechanism. Macromolecules2017, 50, 123–136.

    CAS  Google Scholar 

  37. Zhao, J.; Hadjichristidis, N. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polym. Chem.2015, 6, 2659–2668.

    CAS  Google Scholar 

  38. Pothupitiya, J. U.; Hewawasam, R. S.; Kiesewetter, M. K. Urea and thiourea H-bond donating catalysts for ring-opening polymerization: Mechanistic insights via (non)linear free energy relationships. Macromolecules2018, 51, 3203–3211.

    CAS  Google Scholar 

  39. Fuchise, K.; Igarashi, M.; Sato, K.; Shimada, S. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts. Chem. Sci.2018, 9, 2879–2891.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dove, A. P.; Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. Thiourea-based bifunctional organocatalysis: Supramolecular recognition for living polymerization. J. Am. Chem. Soc.2005, 127, 13798–13799.

    CAS  PubMed  Google Scholar 

  41. Kazakov, O. I.; Datta, P. P.; Isajani, M.; Kiesewetter, E. T.; Kiesewetter, M. K. Cooperative hydrogen-bond pairing in organocatalytic ring-opening polymerization. Macromolecules2014, 47, 7463–7468.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kazakov, O. I.; Kiesewetter, M. K. Cocatalyst binding effects in organocatalytic ring-opening polymerization of L-lactide. Macromolecules2015, 48, 6121–6126.

    CAS  Google Scholar 

  43. Datta, P. Coupled equilibria in H-bond donating ring-opening polymerization: The effective catalyst-determined shift of a polymerization equilibrium. Eur. Polym. J.2017, 95, 671–677.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21734004 and 21674038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Peng Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZL., Zhao, JP. & Zhang, GZ. Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones. Chin J Polym Sci 37, 1205–1214 (2019). https://doi.org/10.1007/s10118-019-2285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2285-1

Keywords

Navigation