Skip to main content
Log in

Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we investigate the motion of polymer segments in polymer/nanoparticle composites by varying nanoparticle (NP) volume fractions. By studying the probability distribution of segment displacement, segment trajectory, and the square displacement of segment, we find the intermittent motion of segments, accompanied with the coexistence of slow and fast segments in polymer nanocomposites (PNCs). The displacement distribution of segments exhibits an exponential tail, rather than a Gaussian form. The intermittent dynamics of chain segments is comprised of a long-range jump motion and a short-range localized motion, which is mediated by the weakly attractive interaction between NP and chain segment and the strong confinement induced by NPs. Meanwhile, the intermittent motion of chain segments can be described by the adsorption-desorption transition at low particle loading and confinement effect at high particle loading. These findings may provide important information for understanding the anomalous motion of polymer chains in the presence of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules2017, 50, 714–731.

    CAS  Google Scholar 

  2. Srivastava, S.; Schaefer, J. L.; Yang, Z.; Tu, Z.; Archer, L. A. 25th anniversary article: Polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.

    PubMed  CAS  Google Scholar 

  3. Renna, L. A.; Boyle, C. J.; Gehan, T. S.; Venkataraman, D. Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules2015, 48, 6353–6368.

    CAS  Google Scholar 

  4. Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano2016, 10, 7231–7247.

    PubMed  CAS  Google Scholar 

  5. Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys.2005, 122, 134910.

    PubMed  Google Scholar 

  6. Smith, G. D.; Bedrov, D.; Li, L.; Byutner, O. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys.2002, 117, 9478–9489.

    CAS  Google Scholar 

  7. Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymernanoparticle interfacial behavior revisited: a molecular dynamics study. Phys. Chem. Chem. Phys.2011, 13, 13058–13069.

    PubMed  CAS  Google Scholar 

  8. Liu, J.; Wu, S.; Zhang, L.; Wang, W.; Cao, D. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys. Chem. Chem. Phys.2011, 13, 518–529.

    PubMed  CAS  Google Scholar 

  9. Smith, J. S.; Bedrov, D.; Smith, G. D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos. Sci. Technol.2003, 63, 1599–1605.

    CAS  Google Scholar 

  10. Goswami, M.; Sumpter, B. G. Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J. Chem. Phys.2009, 130, 134910.

    PubMed  Google Scholar 

  11. Cheng, S.; Carroll, B.; Bocharova, V.; Carrillo, J. M.; Sumpter, B. G.; Sokolov, A. P. Focus: structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J. Chem. Phys.2017, 146, 203201.

    PubMed  Google Scholar 

  12. Cheng, S.; Holt, A. P.; Wang, H.; Fan, F.; Bocharova, V.; Martin, H.; Etampawala, T.; White, B. T.; Saito, T.; Kang, N. G.; Dadmun, M. D.; Mays, J. W.; Sokolov, A. P. Unexpected molecular weight effect in polymer nanocomposites. Phys. Rev. Lett.2016, 116, 038302.

    PubMed  Google Scholar 

  13. Voylov, D. N.; Holt, A. P.; Doughty, B.; Bocharova, V.; Meyer III, H. M.; Cheng, S.; Martin, H.; Dadmun, M.; Kisliuk, A.; Sokolov, A. P. Unraveling the molecular weight dependence of interfacial interactions in poly(2-vinylpyridine)/silica nanocomposites. ACS Macro Lett.2017, 6, 68–72.

    CAS  Google Scholar 

  14. Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter2015, 11, 382–8.

    PubMed  CAS  Google Scholar 

  15. Kim, S. Y.; Meyer, H. W.; Saalwachter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules2012, 45, 4225–4237.

    CAS  Google Scholar 

  16. Kim, S. Y.; Zukoski, C. F. Molecular weight effects on particle and polymer microstructure in concentrated polymer solutions. Macromolecules2013, 46, 6634–6643.

    CAS  Google Scholar 

  17. Hattemer, G. D.; Arya, G. Viscoelastic properties of polymergrafted nanoparticle composites from molecular dynamics simulations. Macromolecules2015, 48, 1240–1255.

    CAS  Google Scholar 

  18. Einstein, A. Zur theorie der brownschen bewegung. Annalen der physik1906, 324, 371–381.

    Google Scholar 

  19. Sentjabrskaja, T.; Zaccarelli, E.; de Michele, C.; Sciortino, F.; Tartaglia, P.; Voigtmann, T.; Egelhaaf, S. U.; Laurati, M. Anomalous dynamics of intruders in a crowded environment of mobile obstacles. Nat. Commun.2016, 7, 11133.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang, B.; Kuo, J.; Bae, S. C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater.2012, 11, 481–485.

    PubMed  CAS  Google Scholar 

  21. Guan, J.; Wang, B.; Granick, S. Even hard-sphere colloidal suspensions display fickian yet non-Gaussian diffusion. ACS Nano2014, 8, 3331–3336.

    PubMed  CAS  Google Scholar 

  22. Hwang, J.; Kim, J.; Sung, B. J. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm. Phys. Rev. E2016, 94, 022614.

    PubMed  Google Scholar 

  23. Skaug, M. J.; Mabry, J.; Schwartz, D. K. Intermittent molecular hopping at the solid-liquid interface. Phys. Rev. Lett. 2013, 110, 256101.

    PubMed  Google Scholar 

  24. Saltzman, E. J.; Schweizer, K. S. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids. Phys. Rev. E2008, 77, 051504.

    Google Scholar 

  25. Chaudhuri, P.; Hurtado, P. I.; Berthier, L.; Kob, W. Relaxation dynamics in a transient network fluid with competing gel and glass phases. J. Chem. Phys.2015, 142, 174503.

    PubMed  Google Scholar 

  26. Kwon, G.; Sung, B. J.; Yethiraj, A. Dynamics in crowded environments: is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B2014, 118, 8128–8134.

    PubMed  CAS  Google Scholar 

  27. Xue, C.; Zheng, X.; Chen, K.; Tian, Y.; Hu, G. Probing non-Gaussianity in confined diffusion of nanoparticles. J. Phys. Chem. Lett.2016, 7, 514–519.

    PubMed  CAS  Google Scholar 

  28. Wang, B.; Anthony, S. M.; Bae, S. C.; Granick, S. Anomalous yet Brownian. Proc. Natl. Acad. Sci.2009, 106, 15160–15164.

    PubMed  CAS  Google Scholar 

  29. Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules2017, 50, 2207–2218.

    CAS  Google Scholar 

  30. Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. Modeling diffusion of adsorbed polymer with explicit solvent. Phys. Rev. Lett.2007, 98, 218301.

    PubMed  Google Scholar 

  31. Walder, R.; Nelson, N.; Schwartz, D. K. Single molecule observations of desorption-mediated diffusion at the solid-liquid interface. Phys. Rev. Lett.2011, 107, 156102.

    PubMed  Google Scholar 

  32. Mabry, J. N.; Schwartz, D. K. Tuning the flight length of molecules diffusing on a hydrophobic surface. J. Phys. Chem. Lett.2015, 6, 2065–9.

    PubMed  CAS  Google Scholar 

  33. Wang, D. P.; Chin, H. Y.; He, C. L.; Stoykovich, M. P.; Schwartz, D. K. Polymer surface transport is a combination of in-plane diffusion and desorption-mediated flights. ACS Macro Lett.2016, 5, 509–514.

    CAS  Google Scholar 

  34. Chien, W.; Chen, Y. L. Abnormal polymer transport in crowded attractive micropost arrays. Soft Matter2016, 12, 7969–7976.

    PubMed  CAS  Google Scholar 

  35. Wang, D.; Hu, R.; Mabry, J. N.; Miao, B.; Wu, D. T.; Koynov, K.; Schwartz, D. K. Scaling of polymer dynamics at an oil-water interface in regimes dominated by viscous drag and desorption-mediated flights. J. Am. Chem. Soc.2015, 137, 12312–12320.

    PubMed  CAS  Google Scholar 

  36. Yu, C.; Guan, J.; Chen, K.; Bae, S. C.; Granick, S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano2013, 7, 9735–9742.

    PubMed  CAS  Google Scholar 

  37. Bychuk, O. V.; O’Shaughnessy, B. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett.1995, 74, 1795–1798.

    PubMed  CAS  Google Scholar 

  38. Schunack, M.; Linderoth, T. R.; Rosei, F.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett.2002, 88, 156102.

    PubMed  CAS  Google Scholar 

  39. Pryamitsyn, V.; Ganesan, V. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules2006, 39, 844–856.

    CAS  Google Scholar 

  40. Schneider, G. J.; Nusser, K.; Neueder, S.; Brodeck, M.; Willner, L.; Farago, B.; Holderer, O.; Briels, W. J.; Richter, D. Anomalous chain diffusion in unentangled model polymer nanocomposites. Soft Matter2013, 9, 4336–4348.

    CAS  Google Scholar 

  41. Skaug, M. J.; Mabry, J. N.; Schwartz, D. K. Single-molecule tracking of polymer surface diffusion. J. Am. Chem. Soc.2014, 136, 1327–32.

    PubMed  CAS  Google Scholar 

  42. Dai, L. J.; Fu, C. L.; Zhu, Y. L.; Sun, Z. Y. Heterogeneous dynamics of unentangled chains in polymer nanocomposites. J. Chem. Phys. 2019, 150, 184903.

    PubMed  Google Scholar 

  43. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    CAS  Google Scholar 

  44. Hardin, R.; Sloane, N.; Smith, W. Tables of spherical codes with icosahedral symmetry. Published electronically at https://doi.org/www.research.att.com 2000.

  45. Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem.2013, 34, 2197–2211.

    PubMed  CAS  Google Scholar 

  46. Li, Y.; Kroger, M.; Liu, W. K. Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles. Soft Matter2014, 10, 1723–37.

    PubMed  CAS  Google Scholar 

  47. Hansen, J. P.; McDonald, I. R. in Theory of simple liquids, Fourth Edition, Academic Press, Oxford, 2013, pp. 311–361.

    Google Scholar 

  48. Colmenero, J.; Alvarez, F.; Arbe, A. Self-motion and the a relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior. Phys. Rev. E2002, 65, 041804.

    CAS  Google Scholar 

  49. van der Meer, B.; Qi, W.; Sprakel, J.; Filion, L.; Dijkstra, M. Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals. Soft Matter2015, 11, 9385–9392.

    PubMed  CAS  Google Scholar 

  50. Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett.2013, 110, 047801.

    PubMed  Google Scholar 

  51. Zangi, R.; Rice, S. A. Cooperative dynamics in two dimensions. Phys. Rev. Lett.2004, 92, 035502.

    PubMed  Google Scholar 

  52. Chaudhuri, P.; Berthier, L.; Kob, W. Universal nature of particle displacements close to glass and jamming transitions. Phys. Rev. Lett.2007, 99, 060604.

    PubMed  Google Scholar 

  53. Dibble, C. J.; Kogan, M.; Solomon, M. J. Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys. Rev. E2006, 74, 041403.

    Google Scholar 

  54. Hurtado, P. I.; Berthier, L.; Kob, W. Heterogeneous diffusion in a reversible gel. Phys. Rev. Lett.2007, 98, 135503.

    PubMed  Google Scholar 

  55. Miyagawa, H.; Hiwatari, Y.; Bernu, B.; Hansen, J. Molecular dynamics study of binary soft-sphere mixtures: jump motions of atoms in the glassy state. J. Chem. Phys.1988, 88, 3879–3886.

    CAS  Google Scholar 

  56. Babayekhorasani, F.; Dunstan, D. E.; Krishnamoorti, R.; Conrad, J. C. Nanoparticle diffusion in crowded and confined media. Soft Matter2016, 12, 8407–8416.

    PubMed  CAS  Google Scholar 

  57. Kob, W.; Donati, C.; Plimpton, S. J.; Poole, P. H.; Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett.1997, 79, 2827–2830.

    CAS  Google Scholar 

  58. Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science2000, 287, 627–631.

    PubMed  CAS  Google Scholar 

  59. Wu, S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer1985, 26, 1855–1863.

    CAS  Google Scholar 

  60. Gam, S.; Meth, J. S.; Zane, S. G.; Chi, C. Z.; Wood, B. A.; Seitz, M. E.; Winey, K. I.; Clarke, N.; Composto, R. J. Macromolecular diffusion in a crowded polymer nanocomposite. Macromolecules2011, 44, 3494–3501.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21790344, 21833008, 21774129), the National Key R&D Program of China (No. 2018YFB0703701), the Jilin Provincial science and technology development program (No. 20190101021JH), and the Key Research Program of Frontier Sciences, CAS (No. QYZDY-SSWSLH027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yan Sun.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, LJ., Fu, CL., Zhu, YL. et al. Probing Intermittent Motion of Polymer Chains in Weakly Attractive Nanocomposites. Chin J Polym Sci 38, 620–628 (2020). https://doi.org/10.1007/s10118-020-2352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2352-7

Keywords

Navigation