Skip to main content
Log in

Ethylene Polymerization and Copolymerization with Polar Monomers by Benzothiophene-bridged BPMO-Pd Catalysts

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of new bisphosphine-monoxide (BPMO) ligands based on benzothiophene backbone and the corresponding palladium complexes {K2-2-P(O)(Ph)2-3-PR1R2-C8H4S}PdMeCl {2a: R1 = R2 = Ph; 2b: R1 = R2 = 2-OMe-Ph; 2c: R1 = R2 = 2-CF3-Ph; 2d: R1 = Ph, R2 = 2-(2′,6′-(OMe)2C6H3)-C6H4} were synthesized and fully characterized by 1 H-, 13C-, 31P-, and 2D-NMR spectroscopy and single-crystal X-ray diffraction. In the presence of Na+B[3,5-(CF3)2C6H3]4− (NaBArF), these complexes showed very high activities (up to 2.0 × 107 gmo−1·h−1) for ethylene polymerization. More significantly, these catalysts enabled the copolymerization of ethylene with a broad scope of commercially available polar comonomers such as acrylates, acrylic acid, acrylonitrile, vinyltrialkoxysilane, allyl acetate, and long-chain 6-chloro-1-hexene to give functionalized polyethylene with reasonable catalytic activities (up to 106 g·mol−1·h−1) and incorporations (up to 5.3 mol%). This contribution suggests that, besides the modulation of conventionally steric and electronic factors, the connectivity (at different linking positions) of BPMO (P,O) donors to the heteroaryl backbone also greatly influences the catalyst properties in terms of catalytic activity, polymer branching content, comonomer scope, and comonomer incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, J. Y.; Hu, Y. L. Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry. Coord. Chem. Rev.2006, 250, 47–65.

    CAS  Google Scholar 

  2. Nakamura, A.; Ito, S.; Nozaki, K. Coordination-insertion copolymerization of fundamental polar monomers. Chem. Rev.2009, 109, 5215–5244.

    PubMed  CAS  Google Scholar 

  3. Mu, H.; Pan, L.; Song, D.; Li, Y. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev.2015, 115, 12091–12137.

    PubMed  CAS  Google Scholar 

  4. Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal.2016, 6, 428–441.

    CAS  Google Scholar 

  5. Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev.2000, 100, 1169–1203.

    PubMed  CAS  Google Scholar 

  6. Chen, M.; Chen, C. L. Polar and functionalized polyolefins: new catalysts, new modulation strategies and new materials. Acta Polymerica Sinica (in Chinese) 2018, 1372–1384.

    Google Scholar 

  7. Jian, Z. B. Synthesis of functionalized polyolefins: design from catalysts to polar monomers. Acta Polymerica Sinica (in Chinese) 2018, 1359–1371.

    Google Scholar 

  8. Tan, C.; Chen, C. L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew. Chem. Int. Ed.2019, 58, 7192–7200.

    CAS  Google Scholar 

  9. Wang, F. Z.; Chen, C. L. A continuing legend: the Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem.2019, 10, 2354–2369.

    CAS  Google Scholar 

  10. Johnson, L. K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc.1996, 118, 267–268.

    CAS  Google Scholar 

  11. Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J. Am. Chem. Soc.1998, 120, 888–899.

    CAS  Google Scholar 

  12. Luo, S. J.; Jordan, R. F. Copolymerization of silyl vinyl ethers with olefins by (α-diimine)PdR+. J. Am. Chem. Soc.2006, 128, 12072–12073.

    PubMed  CAS  Google Scholar 

  13. Chen, Z.; Liu, W.; Daugulis, O.; Brookhart, M. Mechanistic studies of Pd(II)-catalyzed copolymerization of ethylene and vinylalkoxysilanes: evidence for a β -silyl elimination chain transfer mechanism. J. Am. Chem. Soc.2016, 138, 16120–16129.

    PubMed  CAS  Google Scholar 

  14. Wang, J. L.; Zhang, K. J.; Ye, Z. B. One-pot synthesis of hyperbranched polyethylenes tethered with polymerizable methacryloyl groups via selective ethylene copolymerization with heterobifunctional comonomers by chain walking Pd-diimine catalysis. Macromolecules2008, 41, 2290–2293.

    CAS  Google Scholar 

  15. Xia, X. W.; Ye, Z. B.; Morgan, S.; Lu, J. M. “Core-first” synthesis of multiarm star polyethylenes with a hyperbranched core and linear arms via ethylene multifunctional “living” polymerization with hyperbranched polyethylenes encapsulating multinuclear covalently tethered Pd-diimine catalysts. Macromolecules2010, 43, 4889–4901.

    CAS  Google Scholar 

  16. Ye, Z. B.; Xu, L. X.; Dong, Z. M.; Xiang, P. Designing polyethylenes of complex chain architectures via Pd-diimine-catalyzed “living” ethylene polymerization. Chem. Commun.2013, 49, 6235–6255.

    CAS  Google Scholar 

  17. Leung, D. H.; Ziller, J. W.; Guan, Z. Axial donating ligands: a new strategy for late transition metal olefin polymerization catalysis. J. Am. Chem. Soc.2008, 130, 7538–7539.

    PubMed  CAS  Google Scholar 

  18. Wang, Z.; Liu, Q.; Solan, G. A.; Sun, W. H. Recent advances in Ni-mediated ethylene chain growth: nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev.2017, 350, 68–83.

    CAS  Google Scholar 

  19. Rhinehart, J. L.; Brown, L. A.; Long, B. K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc.2013, 135, 16316–16319.

    PubMed  CAS  Google Scholar 

  20. Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone. Macromolecules2017, 50, 2675–2682.

    CAS  Google Scholar 

  21. Chen, X. L.; Gao, J.; Liao, H.; Gao, H. Y.; Wu, Q. Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes. Chinese J. Polym. Sci.2018, 36, 176–184.

    CAS  Google Scholar 

  22. Dai, S.; Chen, C. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed.2016, 55, 13281–13285.

    CAS  Google Scholar 

  23. Dai, S.; Sui, X.; Chen, C. Highly robust palladium(II) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate. Angew. Chem. Int. Ed.2015, 54, 9948–9953.

    CAS  Google Scholar 

  24. Wang, F. Z.; Tian, S. S.; Li, R. P.; Li, W. M.; Chen, C. L. Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization. Chinese J. Polym. Sci.2018, 36, 157–162.

    Google Scholar 

  25. Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I. Palladium catalysed copolymerisation of ethene with alkylacrylates: polar comonomer built into the linear polymer chain. Chem. Commun.2002, 744–745.

    Google Scholar 

  26. Nakamura, A.; Anselment, T. M. J.; Claverie, J.; Goodall, B.; Jordan, R. F.; Mecking, S.; Rieger, B.; Sen, A.; van Leeuwen, P. W. N. M.; Nozaki, K. Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. Acc. Chem. Res.2013, 46, 1438–1449.

    PubMed  CAS  Google Scholar 

  27. Xin, B. S.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu, F. Nickel catalyzed copolymerization of ethylene and alkyl acrylates. J. Am. Chem. Soc.2017, 139, 3611–3614.

    PubMed  CAS  Google Scholar 

  28. Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y. Robust bulky [P,O] neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers. ACS Catal.2018, 8, 5963–5976.

    CAS  Google Scholar 

  29. Zhang, Y.; Mu, H.; Wang, X.; Pan, L.; Li, Y. Elaborate tuning in ligand makes a big difference in catalytic performance: bulky nickel catalysts for (co)polymerization of ethylene with promising vinyl polar monomers. ChemCatChem2019, 11, 2329–2340.

    CAS  Google Scholar 

  30. Carrow, B. P.; Nozaki, K. Synthesis of functional polyolefins using cationic bisphosphine monoxide-palladium complexes. J. Am. Chem. Soc.2012, 134, 8802–8805.

    PubMed  CAS  Google Scholar 

  31. Contrella, N. D.; Sampson, J. R.; Jordan, R. F. Copolymerization of ethylene and methyl acrylate by cationic palladium catalysts that contain phosphine-diethyl phosphonate ancillary ligands. Organometallics2014, 33, 3546–3555.

    CAS  Google Scholar 

  32. Sui, X.; Dai, S.; Chen, C. Ethylene polymerization and copolymerization with polar monomers by cationic phosphine phosphonic amide palladium complexes. ACS Catal.2015, 5, 5932–5937.

    CAS  Google Scholar 

  33. Mitsushige, Y.; Carrow, B. P.; Ito, S.; Nozaki, K. Ligand-controlled insertion regioselectivity accelerates copolymerisation of ethylene with methyl acrylate by cationic bisphosphine monoxide-palladium catalysts. Chem. Sci.2016, 7, 737–744.

    PubMed  CAS  Google Scholar 

  34. Johnson, A. M.; Contrella, N. D.; Sampson, J. R.; Zheng, M.; Jordan, R. F. Allosteric effects in ethylene polymerization catalysis. Enhancement of performance of phosphine-phosphinate and phosphine-phosphonate palladium alkyl catalysts by remote binding of B(C6F5)3. Organometallics2017, 36, 4990–5002.

    CAS  Google Scholar 

  35. Chen, M.; Chen, C. A versatile ligand platform for palladium- and nickel-catalyzed ethylene copolymerization with polar monomers. Angew. Chem. Int. Ed.2018, 57, 3094–3098.

    CAS  Google Scholar 

  36. Mitsushige, Y.; Yasuda, H.; Carrow, B. P.; Ito, S.; Kobayashi, M.; Tayano, T.; Watanabe, Y.; Okuno, Y.; Hayashi, S.; Kuroda, J.; Okumura, Y.; Nozaki, K. Methylene-bridged bisphosphine monoxide ligands for palladium-catalyzed copolymerization of ethylene and polar monomers. ACS Macro Lett.2018, 7, 305–311.

    CAS  Google Scholar 

  37. Zhang, W.; Waddell, P. M.; Tiedemann, M. A.; Padilla, C. E.; Mei, J.; Chen, L; Carrow, B. P. Electron-rich metal cations enable synthesis of high molecular weight, linear functional polyethylenes. J. Am. Chem. Soc.2018, 140, 8841–8850.

    PubMed  CAS  Google Scholar 

  38. Sun, J.; Chen, M.; Luo, G.; Chen, C; Luo, Y. Dphosphazane monoxide and phosphine-sulfonate palladium catalyzed ethylene copolymerization with polar monomers: a computational study. Organometallics2019, 38, 638–646.

    CAS  Google Scholar 

  39. Chen, M.; Yang, B.; Chen, C. Redox-controlled olefin (co)polymerization catalyzed by ferrocene-bridged phosphine-sulfonate palladium complexes. Angew. Chem. Int. Ed.2015, 54, 15520–15524.

    CAS  Google Scholar 

  40. Zábranský, M.; Oberhauser, W.; Manca, G.; Císařová, I.; Štěpnička, P. Selective ethylene dimerization by palladium(II) complexes bearing a phosphinoferrocene sulfonate ligand. Organometallics2019, 38, 1534–1543.

    Google Scholar 

  41. Wu, Z.; Chen, M.; Chen, C. Ethylene polymerization and copolymerization by palladium and nickel catalysts containing naphthalene-bridged phosphine-sulfonate ligands. Organometallics2016, 35, 1472–1479.

    CAS  Google Scholar 

  42. Wu, Z.; Hong, C; Du, H.; Pang, W.; Chen, C. Influence of ligand backbone structure and connectivity on the properties of phosphine-sulfonate Pd(II)/Ni(II) catalysts. Polymers2017, 9, 168.

  43. Ye, J.; Mu, H.; Wang, Z.; Jian, Z. Heteroaryl backbone strategy in bisphosphine monoxide palladium-catalyzed ethylene polymerization and copolymerization with polar monomers. Organometallics2019, 38, 2990–2997.

    CAS  Google Scholar 

  44. Falivene, L; Credendino, R.; Poater, A.; Petta, A.; Serra, L; Oliva, R.; Scarano, V.; Cavallo, L. Sambvca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics2016, 35, 2286–2293.

    CAS  Google Scholar 

  45. Wang, J.; Yao, E.; Chen, Z.; Ma, Y. G. Fluorinated nickel(II) phenoxyiminato catalysts: exploring the role of fluorine atoms in controlling polyethylene productivities and microstructures. Macromolecules2015, 48, 5504–5510.

    CAS  Google Scholar 

  46. Xu, D.; Zhao, X. X.; Chen, Z. T.; Ma, Y. G. Synergistic effect and fluorination effect in ethylene polymerization by nickel phenoxyiminato catalysts. Chinese J. Polym. Sci.2018, 6, 244–251.

    Google Scholar 

  47. Hearley, A. K.; Nowack R. J.; Rieger, B. New single-site palladium catalysts for the nonalternating copolymerization of ethylene and carbon monoxide. Organometallics2005, 24, 2755–2763.

    CAS  Google Scholar 

  48. Chen, M.; Chen, C. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers. ACS Catal.2017, 7, 1308–1312.

    CAS  Google Scholar 

  49. Xia, J.; Zhang, Y.; Zhang, J.; Jian, Z. High-performance neutral phosphine-sulfonate nickel(II) catalysts for efficient ethylene polymerization and copolymerization with polar monomers. Organometallics2019, 38, 1118–1126.

    CAS  Google Scholar 

  50. Chen, Z.; Leatherman, M. D.; Daugulis, O.; Brookhart, M. Nickel-catalyzed copolymerization of ethylene and vinyltrialkoxysilanes: catalytic production of cross-linkable polyethylene and elucidation of the chain-growth mechanism. J. Am. Chem. Soc.2017, 139, 16013–16022.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21871250), the Jilin Provincial Science and Technology Department Program (No. 20190201009JC), and Shaanxi Provincial Natural Science Basic Research Program-Shaanxi Coal and Chemical Industry Group Co., Ltd. Joint Fund (No. 2019JLZ-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Bao Jian.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, HL., Ye, JH., Zhou, GL. et al. Ethylene Polymerization and Copolymerization with Polar Monomers by Benzothiophene-bridged BPMO-Pd Catalysts. Chin J Polym Sci 38, 579–586 (2020). https://doi.org/10.1007/s10118-020-2359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2359-0

Keywords

Navigation